
gcovr Documentation
Release 4.1

the gcovr authors

Mar 14, 2019

Contents:

1 Installation 3

2 Gcovr User Guide 5
2.1 Getting Started . 6
2.2 The gcovr Command . 10
2.3 Using Filters . 13
2.4 Acknowledgements . 15

3 Gcovr Cookbook 17
3.1 How to collect coverage for C extensions in Python . 17

4 Frequently Asked Questions 19
4.1 What is the difference between lcov and gcovr? . 19

5 Contributing 21
5.1 How to report bugs . 21
5.2 How to help . 21
5.3 How to submit a Pull Request . 22
5.4 How to set up a development environment . 22
5.5 Project Structure . 23
5.6 Test suite . 23
5.7 Become a gcovr developer . 24

6 Change Log 25
6.1 4.1 (2 July 2018) . 25
6.2 4.0 (17 June 2018) . 25
6.3 3.4 (12 February 2018) . 26
6.4 3.3 (6 August 2016) . 26
6.5 3.2 (5 July 2014) . 27
6.6 3.1 (6 December 2013) . 27
6.7 3.0 (10 August 2013) . 27
6.8 2.4 (13 April 2012) . 28
6.9 2.3.1 (6 January 2012) . 28
6.10 2.3 (11 December 2011) . 28
6.11 2.2 (10 December 2011) . 29
6.12 2.1 (26 November 2010) . 29
6.13 2.0 (22 August 2010) . 29

i

7 License 31

ii

gcovr Documentation, Release 4.1

Gcovr provides a utility for managing the use of the GNU gcov utility and generating summarized code coverage
results. This command is inspired by the Python coverage.py package, which provides a similar utility for Python.

The gcovr command can produce different kinds of coverage reports:

• default: compact human-readable summaries

• --xml: machine readable XML reports in Cobertura format

• --html: HTML summaries

• --html-details: HTML report with annotated source files

Thus, gcovr can be viewed as a command-line alternative to the lcov utility, which runs gcov and generates an HTML-
formatted report. The development of gcovr was motivated by the need for text summaries and XML reports.

Quick Links

• Getting Help

– Submit a ticket

– Stack Overflow

– Chat on Gitter

• Install from PyPI: pip install gcovr

• Source Code on GitHub

• Change Log

Contents: 1

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://nedbatchelder.com/code/coverage/
http://cobertura.sourceforge.net/
http://ltp.sourceforge.net/coverage/lcov.php
https://github.com/gcovr/gcovr/issues
https://stackoverflow.com/questions/tagged/gcovr
https://gitter.im/gcovr/gcovr
https://pypi.org/project/gcovr/
https://github.com/gcovr/gcovr

gcovr Documentation, Release 4.1

2 Contents:

CHAPTER 1

Installation

Gcovr is available as a Python package that can be installed via pip.

Install newest stable gcovr release from PyPI:

pip install gcovr

Install development version from GitHub:

pip install git+https://github.com/gcovr/gcovr.git

Which environments does gcovr support?

• Python: 2.7 and 3.4+.

The automated tests run on CPython 2.7, 3.4, and 3.5, and PyPy 2.7 and 3.5.

Python 2.6 is no longer supported. The last stable release for that Python version was 3.4.

• Operating System: Linux, Windows, and macOS.

The automated tests run on Ubuntu 14.04 and Windows Server 2012.

• Compiler: GCC and Clang.

The automated tests run on GCC 5.

3

https://pip.pypa.io/en/stable

gcovr Documentation, Release 4.1

4 Chapter 1. Installation

CHAPTER 2

Gcovr User Guide

Gcovr provides a utility for managing the use of the GNU gcov utility and generating summarized code coverage
results. This command is inspired by the Python coverage.py package, which provides a similar utility for Python.

The gcovr command can produce different kinds of coverage reports:

• default: compact human-readable summaries

• --xml: machine readable XML reports in Cobertura format

• --html: HTML summaries

• --html-details: HTML report with annotated source files

Thus, gcovr can be viewed as a command-line alternative to the lcov utility, which runs gcov and generates an HTML-
formatted report. The development of gcovr was motivated by the need for text summaries and XML reports.

The Gcovr Home Page is http://gcovr.com. Automated test results are available through Travis CI and Appveyor.
Gcovr is available under the BSD license.

This documentation describes Gcovr 4.1.

This User Guide provides the following sections:

• Getting Started

– Tabular Output of Code Coverage

– Tabular Output of Branch Coverage

– XML Output

– HTML Output

• The gcovr Command

– gcovr

• Using Filters

5

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://nedbatchelder.com/code/coverage/
http://cobertura.sourceforge.net/
http://ltp.sourceforge.net/coverage/lcov.php
http://gcovr.com
http://gcovr.com
https://travis-ci.org/gcovr/gcovr
https://ci.appveyor.com/project/latk/gcovr-0p8sb/branch/master
http://www.gnu.org/licenses/bsd.html

gcovr Documentation, Release 4.1

– Speeding up coverage data search

– Filters for symlinks

• Acknowledgements

Related documents:

• Installation

• Contributing (includes instructions for bug reports)

• Gcovr Cookbook

• Frequently Asked Questions

• Change Log

• License

2.1 Getting Started

The gcovr command provides a summary of the lines that have been executed in a program. Code coverage statistics
help you discover untested parts of a program, which is particularly important when assessing code quality. Well-
tested code is a characteristic of high quality code, and software developers often assess code coverage statistics when
deciding if software is ready for a release.

The gcovr command can be used to analyze programs compiled with GCC. The following sections illustrate the
application of gcovr to test coverage of the following program:

1 // example.cpp
2
3 int foo(int param)
4 {
5 if (param)
6 {
7 return 1;
8 }
9 else

10 {
11 return 0;
12 }
13 }
14
15 int main(int argc, char* argv[])
16 {
17 foo(0);
18
19 return 0;
20 }

This code executes several subroutines in this program, but some lines in the program are not executed.

2.1.1 Tabular Output of Code Coverage

We compile example1.cpp with the GCC compiler as follows:

6 Chapter 2. Gcovr User Guide

gcovr Documentation, Release 4.1

g++ -fprofile-arcs -ftest-coverage -fPIC -O0 example.cpp -o program

Note that we compile this program without optimization, because optimization may combine lines of code and
otherwise change the flow of execution in the program. Additionally, we compile with the -fprofile-arcs
-ftest-coverage -fPIC compiler options, which add logic to generate output files that can be processed by the
gcov command.

The compiler generates the program executable. When we execute this command:

./program

the files example1.gcno and example1.gcda are generated. These files are processed with by gcov to generate
code coverage statistics. The gcovr command calls gcov and summarizes these code coverage statistics in various
formats. For example:

gcovr -r .

generates a text summary of the lines executed:

--
GCC Code Coverage Report

Directory: .
--
File Lines Exec Cover Missing
--
example.cpp 7 6 85% 7
--
TOTAL 7 6 85%
--

Each line of this output includes a summary for a given source file, including the number of lines instrumented, the
number of lines executed, the percentage of lines executed, and a summary of the line numbers that were not executed.
To improve clarity, gcovr uses an aggressive approach to grouping uncovered lines and will combine uncovered lines
separated by “non-code” lines (blank, freestanding braces, and single-line comments) into a single region. As a result,
the number of lines listed in the “Missing” list may be greater than the difference of the “Lines” and “Exec” columns.

The -r option specifies the root directory for the files that are being analyzed. This allows gcovr to generate a
simpler report (without absolute path names), and it allows system header files to be excluded from the analysis.

Note that gcov accumulates statistics by line. Consequently, it works best with a programming style that places only
one statement on each line.

2.1.2 Tabular Output of Branch Coverage

The gcovr command can also summarize branch coverage using the --branches option:

gcovr -r . --branches

This generates a tabular output that summarizes the number of branches, the number of branches taken and the branches
that were not completely covered:

--
GCC Code Coverage Report

Directory: .
--
File Branches Taken Cover Missing
--
example.cpp 2 1 50% 5
--

(continues on next page)

2.1. Getting Started 7

gcovr Documentation, Release 4.1

(continued from previous page)

TOTAL 2 1 50%
--

2.1.3 XML Output

The default output format for gcovr is to generate a tabular summary in plain text. The gcovr command can also
generate an XML output using the --xml and --xml-pretty options:

gcovr -r . --xml-pretty

This generates an XML summary of the lines executed:

<?xml version="1.0" ?>
<!DOCTYPE coverage

SYSTEM 'http://cobertura.sourceforge.net/xml/coverage-04.dtd'>
<coverage branch-rate="0.5" branches-covered="1" branches-valid="2"
complexity="0.0" line-rate="0.8571428571428571" lines-covered="6"
lines-valid="7" timestamp="1530565116" version="gcovr 4.1">
<sources>
<source>.</source>
</sources>
<packages>
<package branch-rate="0.5" complexity="0.0" line-rate="0.8571428571428571"
name="">
<classes>
<class branch-rate="0.5" complexity="0.0" filename="example.cpp"
line-rate="0.8571428571428571" name="example_cpp">
<methods/>
<lines>
<line branch="false" hits="1" number="3"/>
<line branch="true" condition-coverage="50% (1/2)" hits="1" number="5">
<conditions>
<condition coverage="50%" number="0" type="jump"/>

</conditions>
</line>
<line branch="false" hits="0" number="7"/>
<line branch="false" hits="1" number="11"/>
<line branch="false" hits="1" number="15"/>
<line branch="false" hits="1" number="17"/>
<line branch="false" hits="1" number="19"/>

</lines>
</class>
</classes>

</package>
</packages>

</coverage>

This XML format is in the Cobertura XML format suitable for import and display within the Jenkins and Hudson
continuous integration servers using the Cobertura Plugin.

The --xml option generates a denser XML output, and the --xml-pretty option generates an indented XML out-
put that is easier to read. Note that the XML output contains more information than the tabular summary. The tabular
summary shows the percentage of covered lines, while the XML output includes branch statistics and the number of

8 Chapter 2. Gcovr User Guide

http://cobertura.sourceforge.net/xml/coverage-04.dtd
http://www.jenkins-ci.org/
http://www.hudson-ci.org/
https://wiki.jenkins-ci.org/display/JENKINS/Cobertura+Plugin

gcovr Documentation, Release 4.1

times that each line was covered. Consequently, XML output can be used to support performance optimization in the
same manner that gcov does.

2.1.4 HTML Output

The gcovr command can also generate a simple HTML output using the --html option:

gcovr -r . --html -o example-html.html

This generates a HTML summary of the lines executed. In this example, the file example1.html is generated,
which has the following output:

The default behavior of the --html option is to generate HTML for a single webpage that summarizes the coverage
for all files. The HTML is printed to standard output, but the -o (--output) option is used to specify a file that
stores the HTML output.

The --html-details option is used to create a separate web page for each file. Each of these web pages includes
the contents of file with annotations that summarize code coverage. Consider the following command:

gcovr -r . --html --html-details -o example-html-details.html

This generates the following HTML page for the file example1.cpp:

2.1. Getting Started 9

gcovr Documentation, Release 4.1

Note that the --html-details option can only be used with the -o (--output) option. For example, if the
--output option specifies the output file coverage.html, then the web pages generated for each file will have
names of the form coverage.<filename>.html.

2.2 The gcovr Command

The gcovr command recursively searches a directory tree to find gcov coverage files, and generates a text summary
of the code coverage. The --help option generates the following summary of the gcovr command line options:

2.2.1 gcovr

A utility to run gcov and summarize the coverage in simple reports.

usage: gcovr [options] [search_paths...]

See <http://gcovr.com/> for the full manual.

10 Chapter 2. Gcovr User Guide

http://gcovr.com/

gcovr Documentation, Release 4.1

Options

search_paths
Search these directories for coverage files. Defaults to –root and –object-directory.

-h, --help
Show this help message, then exit.

--version
Print the version number, then exit.

-v, --verbose
Print progress messages. Please include this output in bug reports.

-r <root>, --root <root>
The root directory of your source files. Defaults to ‘.’, the current directory. File names are reported relative to
this root. The –root is the default –filter.

--fail-under-line <min>
Exit with a status of 2 if the total line coverage is less than MIN. Can be ORed with exit status of ‘–fail-under-
branch’ option.

--fail-under-branch <min>
Exit with a status of 4 if the total branch coverage is less than MIN. Can be ORed with exit status of ‘–fail-
under-line’ option.

--source-encoding <source_encoding>
Select the source file encoding. Defaults to the system default encoding (UTF-8).

--html-medium-threshold <medium>
If the coverage is below MEDIUM, the value is marked as low coverage in the HTML report. MEDIUM has to
be lower than or equal to value of –html-high-threshold. If MEDIUM is equal to value of –html-high-threshold
the report has only high and low coverage. Default is 75.0.

--html-high-threshold <high>
If the coverage is below HIGH, the value is marked as medium coverage in the HTML report. HIGH has to be
greater than or equal to value of –html-medium-threshold. If HIGH is equal to value of –html-medium-threshold
the report has only high and low coverage. Default is 90.0.

Output Options

Gcovr prints a text report by default, but can switch to XML or HTML.

-o <output>, --output <output>
Print output to this filename. Defaults to stdout. Required for –html-details.

-b, --branches
Report the branch coverage instead of the line coverage. For text report only.

-u, --sort-uncovered
Sort entries by increasing number of uncovered lines. For text and HTML report.

-p, --sort-percentage
Sort entries by increasing percentage of uncovered lines. For text and HTML report.

-x, --xml
Generate a Cobertura XML report.

--xml-pretty
Pretty-print the XML report. Implies –xml. Default: False.

2.2. The gcovr Command 11

gcovr Documentation, Release 4.1

--html
Generate a HTML report.

--html-details
Add annotated source code reports to the HTML report. Requires –output as a basename for the reports. Implies
–html.

--html-title <title>
Use TITLE as title for the HTML report. Default is Head.

--html-absolute-paths
Use absolute paths to link the –html-details reports. Defaults to relative links.

--html-encoding <html_encoding>
Override the declared HTML report encoding. Defaults to UTF-8. See also –source-encoding.

-s, --print-summary
Print a small report to stdout with line & branch percentage coverage. This is in addition to other reports.
Default: False.

Filter Options

Filters decide which files are included in the report. Any filter must match, and no exclude filter must match. A filter
is a regular expression that matches a path. Filter paths use forward slashes, even on Windows.

-f <filter>, --filter <filter>
Keep only source files that match this filter. Can be specified multiple times. If no filters are provided, defaults
to –root.

-e <exclude>, --exclude <exclude>
Exclude source files that match this filter. Can be specified multiple times.

--gcov-filter <gcov_filter>
Keep only gcov data files that match this filter. Can be specified multiple times.

--gcov-exclude <gcov_exclude>
Exclude gcov data files that match this filter. Can be specified multiple times.

--exclude-directories <exclude_dirs>
Exclude directories that match this regex while searching raw coverage files. Can be specified multiple times.

GCOV Options

The ‘gcov’ tool turns raw coverage files (.gcda and .gcno) into .gcov files that are then processed by gcovr. The gcno
files are generated by the compiler. The gcda files are generated when the instrumented program is executed.

--gcov-executable <gcov_cmd>
Use a particular gcov executable. Must match the compiler you are using, e.g. ‘llvm-cov gcov’ for Clang. Can
include additional arguments. Defaults to the GCOV environment variable, or ‘gcov’: ‘gcov’.

--exclude-unreachable-branches
Exclude branch coverage with LCOV/GCOV exclude markers. Additionally, exclude branch coverage from
lines without useful source code (often, compiler-generated “dead” code). Default: False.

-g, --use-gcov-files
Use existing gcov files for analysis. Default: False.

--gcov-ignore-parse-errors
Skip lines with parse errors in GCOV files instead of exiting with an error. A report will be shown on stderr.
Default: False.

12 Chapter 2. Gcovr User Guide

gcovr Documentation, Release 4.1

--object-directory <objdir>
Override normal working directory detection. Gcovr needs to identify the path between gcda files and the
directory where the compiler was originally run. Normally, gcovr can guess correctly. This option specifies
either the path from gcc to the gcda file (i.e. gcc’s ‘-o’ option), or the path from the gcda file to gcc’s working
directory.

-k, --keep
Keep gcov files after processing. This applies both to files that were generated by gcovr, or were supplied via
the –use-gcov-files option. Default: False.

-d, --delete
Delete gcda files after processing. Default: False.

-j <gcov_parallel>
Set the number of threads to use in parallel.

The above Getting Started guide illustrates the use of some command line options. Using Filters is discussed below.

2.3 Using Filters

Gcovr tries to only report coverage for files within your project, not for your libraries. This is influenced by the
following options:

• -r, --root

• -f, --filter

• -e, --exclude

• --gcov-filter

• --gcov-exclude

• --exclude-directories

• (the current working directory where gcovr is invoked)

These options take filters. A filter is a regular expression that matches a file path. Because filters are regexes, you will
have to escape “special” characters with a backslash \.

Always use forward slashes / as path separators, even on Windows:

• wrong: --filter C:\project\src\

• correct: --filter C:/project/src/

If the filter looks like an absolute path, it is matched against an absolute path. Otherwise, the filter is matched against
a relative path, where that path is relative to the current directory. Examples of relative filters:

• --filter subdir/ matches only that subdirectory

• --filter '\.\./src/' matches a sibling directory ../src. But because a dot . matches any character
in a regex, we have to escape it. You have to use additional shell escaping. This example uses single quotes for
Bash or POSIX shell.

• --filter '(.+/)?foo\.c$' matches only files called foo.c. The regex must match from the start of
the relative path, so we ignore any leading directory parts with (.+/)?. The $ at the end ensures that the path
ends here.

If no --filter is provided, the --root is turned into a default filter. Therefore, files outside of the --root
directory are excluded.

To be included in a report, the source file must match any --filter, and must not match any --exclude filter.

2.3. Using Filters 13

gcovr Documentation, Release 4.1

The --gcov-filter and --gcov-exclude filters apply to the .gcov files created by gcov. This is useful
mostly when running gcov yourself, and then invoking gcovr with -g/--use-gcov-files. But these filters also
apply when gcov is launched by gcovr.

2.3.1 Speeding up coverage data search

The --exclude-directories filter is used while searching for raw coverage data (or for existing .gcov files
when --use-gcov-files is active). This filter is matched against directory paths, not file paths. If a directory
matches, all its contents (files and subdirectories) will be excluded from the search. For example, consider this build
directory:

build/
main.o
main.gcda
main.gcno
a/

awesome_code.o
awesome_code.gcda
awesome_code.gcno

b/
better_code.o
better_code.gcda
better_code.gcno

If we run gcovr --exclude-directories 'build/a$', this will exclude anything in the build/a direc-
tory but will use the coverage data for better_code.o and main.o.

This can speed up gcovr when you have a complicated build directory structure. Consider also using the
search_paths or --object-directory arguments to specify where gcovr starts searching. If you are un-
sure which directories are being searched, run gcovr in --verbose mode.

For each found coverage data file gcovr will invoke the gcov tool. This is typically the slowest part, and other filters
can only be applied after this step. In some cases, parallel execution with the -j option might be helpful to speed up
processing.

2.3.2 Filters for symlinks

Gcovr matches filters against real paths that have all their symlinks resolved. E.g. consider this project layout:

/home/you/
project/ (pwd)

src/
relevant-library/ -> ../external-library/
ignore-this/

external-library/
src/

Here, the relevant-library has the real path /home/you/external-library.

To write a filter that includes both src/ and relevant-library/src/, we cannot use --filter
relevant-library/src/ because that contains a symlink. Instead, we have to use an absolute path to the
real name:

gcovr --filter src/ --filter /home/you/external-library/src/

or a relative path to the real path:

14 Chapter 2. Gcovr User Guide

gcovr Documentation, Release 4.1

gcovr --filter src/ --filter '\.\./external-library/src/'

Note: This section discusses symlinks on Unix systems. The behavior under Windows is unclear. If you have more
insight, please update this section by submitting a pull request (see our contributing guide).

2.4 Acknowledgements

Gcovr is maintained by:

William Hart, John Siirola, and Lukas Atkinson.

The following developers contributed to gcovr (ordered alphabetically):

Andrew Stone, Arvin Schnell, Attie Grande, Bernhard Breinbauer, Carlos Jenkins, Christian Taedcke,
Dave George, Dom Postorivo, goriy, ja11sop, James Reynolds, Jessica Levine, Joel Klinghed, John Si-
irola, Jörg Kreuzberger, Kai Blaschke, Kevin Cai, libPhipp, Lukas Atkinson, Luke Woydziak, Marek
Kurdej, Martin Mraz, Matsumoto Taichi, Matthew Stadelman, Matthias Schmieder, Matthieu Darbois,
Michał Pszona, Michael Förderer, Mikael Salson, Mikk Leini, Nikolaj Schumacher, Piotr Dziwinski,
Reto Schneider, Robert Rosengren, Songmin Li, Steven Myint, Sylvestre Ledru, trapzero, William Hart,
and possibly others.

The development of Gcovr has been partially supported by Sandia National Laboratories. Sandia National Laboratories
is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

2.4. Acknowledgements 15

gcovr Documentation, Release 4.1

16 Chapter 2. Gcovr User Guide

CHAPTER 3

Gcovr Cookbook

3.1 How to collect coverage for C extensions in Python

Collecting code coverage data on the C code that makes up a Python extension module is not quite as straightforward
as with a regular C program.

As with a normal C project, we have to compile our code with coverage instrumentation. Here, we export
CFLAGS="--coverage" and then run python3 setup.py build_ext.

Unfortunately, build_ext can rebuild a source file even if the current object file is up to date. If multiple extension
modules share the same source code file, gcov will get confused by the different timestamps and report inaccurate
coverage. It is nontrivial to adapt the build_ext process to avoid this.

Instead, we can use the ccache utility to make the compilation lazy (works best on Unix systems). Before we invoke
the build_ext step, we first export CC="ccache gcc". Ccache works well but isn’t absolutely perfect, see
the ccache manual for caveats.

A shell session might look like this:

Set required env vars
export CFLAGS="--coverage"
export CC="ccache gcc"

clear out build files so we get a fresh compile
rm -rf build/temp.* # contains old .gcda, .gcno files
rm -rf build/lib.*

rebuild extensions
python3 setup.py build_ext --inplace # possibly --force

run test command i.e. pytest

run gcovr
rm -rf coverage; mkdir coverage
gcovr --filter src/ --print-summary --html-details -o coverage/index.html

17

https://ccache.samba.org/manual/latest.html#_caveats

gcovr Documentation, Release 4.1

18 Chapter 3. Gcovr Cookbook

CHAPTER 4

Frequently Asked Questions

4.1 What is the difference between lcov and gcovr?

Both lcov and gcovr are tools to create coverage reports.

Gcovr was originally created as a simple script to provide a convenient command line interface to gcov that produced
more easily digestible output similar to Python’s coverage utilities.

Later, we added XML output that could be used with the Cobertura plugin of the Jenkins continuous integration server.
This gave us nice coverage reports for C/C++ code in Jenkins.

HTML output was added much later. If all you need is HTML, pick whichever one produces the output you like better
or integrates easier with your existing workflow.

Lcov is a far older project that is part of the Linux Test Project. It provides some features that gcovr does not have:
For example, lcov has explicit support for capturing Linux kernel coverage. Lcov also supports various trace file
manipulation functions such as merging trace files from different test runs. You can learn more at the lcov website or
the lcov GitHub repository.

19

http://ltp.sourceforge.net/coverage/lcov.php
https://github.com/linux-test-project/lcov

gcovr Documentation, Release 4.1

20 Chapter 4. Frequently Asked Questions

CHAPTER 5

Contributing

This document contains:

• our guidelines for bug reports

• general contribution guidelines

• a checklist for pull requests

• a developer guide that explains the development environment, project structure, and test suite

5.1 How to report bugs

When reporting a bug, first search our issues to avoid duplicates. In your bug report, please describe what you expected
gcovr to do, and what it actually did. Also try to include the following details:

• how you invoked gcovr, i.e. the exact flags and from which directory

• your project layout

• your gcovr version

• your compiler version

• your operating system

• and any other relevant details.

Ideally, you can provide a short script and the smallest possible source file to reproduce the problem.

5.2 How to help

If you would like to help out, please take a look at our open issues and pull requests. The issues labeled help wanted
and needs review would have the greatest impact.

There are many ways how you can help:

21

https://github.com/gcovr/gcovr/issues?q=is%3Aissue
https://github.com/gcovr/gcovr/issues
https://github.com/gcovr/gcovr/pulls
https://github.com/gcovr/gcovr/labels/help%20wanted
https://github.com/gcovr/gcovr/labels/needs%20review

gcovr Documentation, Release 4.1

• assist other users with their problems

• share your perspective as a gcovr user in discussions

• test proposed changes in your real-world projects

• improve our documentation

• submit pull requests with bug fixes and enhancements

5.3 How to submit a Pull Request

Thank you for helping with gcovr development! Please follow this checklist for your pull request:

• Is this a good approach? Fixing open issues is always welcome! If you want to implement an enhancement,
please discuss it first as a GitHub issue.

• Does it work? Please run the tests locally:

python -m pytest

In any case, the tests will run automatically when you open the pull request. But please prevent unnecessary
build failures and run the tests yourself first. If you cannot run the tests locally, you can activate Travis CI or
Appveyor for your fork.

If you add new features, please try to add a test case.

• Does it conform to the style guide? The source code should conform to the PEP 8 standard. Please check your
code:

python -m flake8 doc gcovr --ignore E501

• Add yourself as an author. If this is your first contribution to gcovr, please add yourself to the AUTHORS.txt
file.

• One change at a time. Please keep your commits and your whole pull request fairly small, so that the changes
are easy to review. Each commit should only contain one kind of change, e.g. refactoring or new functionality.

• Why is this change necessary? When you open the PR, please explain why we need this change and what your
PR does. If this PR fixes an open issue, reference that issue in the pull request description.

Once you submit the PR, it will be automatically tested on Windows and Linux, and code coverage will be collected.
Your code will be reviewed. This can take a week. Please fix any issues that are discovered during this process. Feel
free to force-push your updates to the pull request branch.

If you need assistance for your pull request, you can

• chat in our Gitter room

• discuss your problem in an issue

• open an unfinished pull request as a work in progress (WIP), and explain what you’ve like to get reviewed

5.4 How to set up a development environment

• (Optional) Fork the project on GitHub.

• Clone the git repository.

• (Optional) Set up a virtualenv.

22 Chapter 5. Contributing

https://www.python.org/dev/peps/pep-0008
https://gitter.im/gcovr/gcovr

gcovr Documentation, Release 4.1

• Install gcovr in development mode, and install the test requirements:

pip install -e .
pip install -r requirements.txt

You can then run gcovr as gcovr or python -m gcovr.

Run the tests to verify that everything works (see below).

• (Optional) Install documentation requirements:

pip install -r doc/requirements.txt

See doc/README.txt for details on working with the documentation.

• (Optional) Activate Travis and Appveyor for your forked GitHub repository, so that the cross-platform compati-
bility tests get run whenever you push your work to your repository. These tests will also be run when you open
a pull request to the main gcovr repository.

Tip: If you have problems getting everything set up, consider looking at the .travis.yml (Linux) and appveyor.
yml (Windows) files.

On Windows, you will need to install a GCC toolchain as the tests expect a Unix-like environment. You can use
MinGW-W64 or MinGW. To run the tests, please make sure that the make and cmake from your MinGW distribution
are in the system PATH.

5.5 Project Structure

Path Description
/ project root
/gcovr/ the gcovr source code (Python module)
/gcovr/__main__.py command line interface + top-level behaviour
/gcovr/templates/ HTML report templates
/gcovr/tests/ unit tests + integration test corpus
/setup.py Python package configuration
/doc/ documentation
/doc/sources/ user guide + website
/doc/examples/ runnable examples for the user guide

The program entrypoint and command line interface is in gcovr/__main__.py. The coverage data is parsed in
the gcovr.gcov module. The HTML, XML, text, and summary reports are in gcovr.html_generator and
respective modules.

5.6 Test suite

The tests are in the gcovr/tests directory. You can run the tests with python -m pytest.

There are unit tests for some parts of gcovr, and a comprehensive corpus of example projects that are executed as the
test_gcovr.py test. Each gcovr/tests/* directory is one such example project.

Each project in the corpus contains a Makefile and a reference directory. The Makefile controls how the project
is built, and how gcovr should be invoked. The reference directory contains baseline files against which the gcovr
output is compared. Each project is tested three times to cover txt, html, and xml output.

5.5. Project Structure 23

gcovr Documentation, Release 4.1

Because the tests are a bit slow, you can limit the tests to a specific test file, example project, or output format. For
example:

run only XML tests
python -m pytest -k xml

run the simple1 tests
python -m pytest -k simple1

run the simple1 tests only for XML
python -m pytest -k 'xml and simple1'

To see all tests, run pytest in -v verbose mode. To see which tests would be run, add the --collect-only option.

The tests currently assume that you are using GCC 5.

5.7 Become a gcovr developer

After you’ve contributed a bit (whether with discussions, documentation, or code), consider becoming a gcovr devel-
oper. As a developer, you can:

• manage issues and pull requests (label and close them)

• review pull requests (a developer must approve each PR before it can be merged)

• participate in votes

Just open an issue that you’re interested, and we’ll have a quick vote.

24 Chapter 5. Contributing

CHAPTER 6

Change Log

gcovr Release History and Change Log

6.1 4.1 (2 July 2018)

• Fixed/improved –exclude-directories option. (#266)

• New “Cookbook” section in the documentation. (#265)

6.2 4.0 (17 June 2018)

Breaking changes:

• This release drops support for Python 2.6. (#250)

• PIP is the only supported installation method.

• No longer encoding-agnostic under Python 2.7. If your source files do not use the system encoding (probably
UTF-8), you will have to specify a –source-encoding. (#148, #156, #256)

• Filters now use forward slashes as path separators, even on Windows. (#191, #257)

• Filters are no longer normalized into pseudo-paths. This could change the interpretation of filters in some edge
cases.

Improvements and new features:

• Improved –help output. (#236)

• Parse the GCC 8 gcov format. (#226, #228)

• New –source-encoding option, which fixes decoding under Python 3. (#256)

• New –gcov-ignore-parse-errors flag. By default, gcovr will now abort upon parse errors. (#228)

• Detect the error when gcov cannot create its output files (#243, #244)

25

https://github.com/gcovr/gcovr/issues/266
https://github.com/gcovr/gcovr/issues/265
https://github.com/gcovr/gcovr/issues/250
https://github.com/gcovr/gcovr/issues/148
https://github.com/gcovr/gcovr/issues/156
https://github.com/gcovr/gcovr/issues/256
https://github.com/gcovr/gcovr/issues/191
https://github.com/gcovr/gcovr/issues/257
https://github.com/gcovr/gcovr/issues/236
https://github.com/gcovr/gcovr/issues/226
https://github.com/gcovr/gcovr/issues/228
https://github.com/gcovr/gcovr/issues/256
https://github.com/gcovr/gcovr/issues/228
https://github.com/gcovr/gcovr/issues/243
https://github.com/gcovr/gcovr/issues/244

gcovr Documentation, Release 4.1

• Add -j flag to run gcov processes in parallel. (#3, #36, #239)

• The –html-details flag now implies –html. (#93, #211)

• The –html output can now be used without an –output filename (#223)

• The docs are now managed with Sphinx. (#235, #248, #249, #252, #253)

• New –html-title option to change the title of the HTML report. (#261, #263)

• New options –html-medium-threshold and –html-high-threshold to customize the color legend. (#261, #264)

Internal changes:

• Huge refactoring. (#214, #215, #221 #225, #228, #237, #246)

• Various testing improvements. (#213, #214, #216, #217, #218, #222, #223, #224, #227, #240, #241, #245)

• HTML reports are now rendered with Jinja2 templates. (#234)

• New contributing guide. (#253)

6.3 3.4 (12 February 2018)

• Added –html-encoding command line option (#139).

• Added –fail-under-line and –fail-under-branch options, which will error under a given minimum coverage.
(#173, #116)

• Better pathname resolution heuristics for –use-gcov-file. (#146)

• The –root option defaults to current directory ‘.’.

• Improved reports for “(“, “)”, “;” lines.

• HTML reports show full timestamp, not just date. (#165)

• HTML reports treat 0/0 coverage as NaN, not 100% or 0%. (#105, #149, #196)

• Add support for coverage-04.dtd Cobertura XML format (#164, #186)

• Only Python 2.6+ is supported, with 2.7+ or 3.4+ recommended. (#195)

• Added CI testing for Windows using Appveyor. (#189, #200)

• Reports use forward slashes in paths, even on Windows. (#200)

• Fix to support filtering with absolute paths.

• Fix HTML generation with Python 3. (#168, #182, #163)

• Fix –html-details under Windows. (#157)

• Fix filters under Windows. (#158)

• Fix verbose output when using existing gcov files (#143, #144)

6.4 3.3 (6 August 2016)

• Added CI testing using TravisCI

• Added more tests for out of source builds and other nested builds

• Avoid common file prefixes in HTML output (#103)

26 Chapter 6. Change Log

https://github.com/gcovr/gcovr/issues/3
https://github.com/gcovr/gcovr/issues/36
https://github.com/gcovr/gcovr/issues/239
https://github.com/gcovr/gcovr/issues/93
https://github.com/gcovr/gcovr/issues/211
https://github.com/gcovr/gcovr/issues/223
https://github.com/gcovr/gcovr/issues/235
https://github.com/gcovr/gcovr/issues/248
https://github.com/gcovr/gcovr/issues/249
https://github.com/gcovr/gcovr/issues/252
https://github.com/gcovr/gcovr/issues/253
https://github.com/gcovr/gcovr/issues/261
https://github.com/gcovr/gcovr/issues/263
https://github.com/gcovr/gcovr/issues/261
https://github.com/gcovr/gcovr/issues/264
https://github.com/gcovr/gcovr/issues/214
https://github.com/gcovr/gcovr/issues/215
https://github.com/gcovr/gcovr/issues/221
https://github.com/gcovr/gcovr/issues/225
https://github.com/gcovr/gcovr/issues/228
https://github.com/gcovr/gcovr/issues/237
https://github.com/gcovr/gcovr/issues/246
https://github.com/gcovr/gcovr/issues/213
https://github.com/gcovr/gcovr/issues/214
https://github.com/gcovr/gcovr/issues/216
https://github.com/gcovr/gcovr/issues/217
https://github.com/gcovr/gcovr/issues/218
https://github.com/gcovr/gcovr/issues/222
https://github.com/gcovr/gcovr/issues/223
https://github.com/gcovr/gcovr/issues/224
https://github.com/gcovr/gcovr/issues/227
https://github.com/gcovr/gcovr/issues/240
https://github.com/gcovr/gcovr/issues/241
https://github.com/gcovr/gcovr/issues/245
https://github.com/gcovr/gcovr/issues/234
https://github.com/gcovr/gcovr/issues/253
https://github.com/gcovr/gcovr/issues/139
https://github.com/gcovr/gcovr/issues/173
https://github.com/gcovr/gcovr/issues/116
https://github.com/gcovr/gcovr/issues/146
https://github.com/gcovr/gcovr/issues/165
https://github.com/gcovr/gcovr/issues/105
https://github.com/gcovr/gcovr/issues/149
https://github.com/gcovr/gcovr/issues/196
https://github.com/gcovr/gcovr/issues/164
https://github.com/gcovr/gcovr/issues/186
https://github.com/gcovr/gcovr/issues/195
https://github.com/gcovr/gcovr/issues/189
https://github.com/gcovr/gcovr/issues/200
https://github.com/gcovr/gcovr/issues/200
https://github.com/gcovr/gcovr/issues/168
https://github.com/gcovr/gcovr/issues/182
https://github.com/gcovr/gcovr/issues/163
https://github.com/gcovr/gcovr/issues/157
https://github.com/gcovr/gcovr/issues/158
https://github.com/gcovr/gcovr/issues/143
https://github.com/gcovr/gcovr/issues/144
https://github.com/gcovr/gcovr/issues/103

gcovr Documentation, Release 4.1

• Added the –execlude-directories argument to exclude directories from the search for symlinks (#87)

• Added branches taken/not taken to HTML (#75)

• Use –object-directory to scan for gcov data files (#72)

• Improved logic for nested makefiles (#135)

• Fixed unexpected semantics with –root argument (#108)

• More careful checks for covered lines (#109)

6.5 3.2 (5 July 2014)

• Adding a test for out of source builds

• Using the starting directory when processing gcov filenames. (#42)

• Making relative paths the default in html output.

• Simplify html bar with coverage is zero.

• Add option for using existing gcov files (#35)

• Fixing –root argument processing (#27)

• Adding logic to cover branches that are ignored (#28)

6.6 3.1 (6 December 2013)

• Change to make the -r/–root options define the root directory for source files.

• Fix to apply the -p option when the –html option is used.

• Adding new option, ‘–exclude-unreachable-branches’ that will exclude branches in certain lines from coverage
report.

• Simplifying and standardizing the processing of linked files.

• Adding tests for deeply nested code, and symbolic links.

• Add support for multiple —filter options in same manner as —exclude option.

6.7 3.0 (10 August 2013)

• Adding the ‘–gcov-executable’ option to specify the name/location of the gcov executable. The command line
option overrides the environment variable, which overrides the default ‘gcov’.

• Adding an empty “<methods/>” block to <classes/> in the XML output: this makes out XML complient with
the Cobertura DTD. (#3951)

• Allow the GCOV environment variable to override the default ‘gcov’ executable. The default is to search the
PATH for ‘gcov’ if the GCOV environment variable is not set. (#3950)

• Adding support for LCOV-style flags for excluding certain lines from coverage analysis. (#3942)

• Setup additional logic to test with Python 2.5.

• Added the –html and –html-details options to generate HTML.

6.5. 3.2 (5 July 2014) 27

https://github.com/gcovr/gcovr/issues/87
https://github.com/gcovr/gcovr/issues/75
https://github.com/gcovr/gcovr/issues/72
https://github.com/gcovr/gcovr/issues/135
https://github.com/gcovr/gcovr/issues/108
https://github.com/gcovr/gcovr/issues/109
https://github.com/gcovr/gcovr/issues/42
https://github.com/gcovr/gcovr/issues/35
https://github.com/gcovr/gcovr/issues/27
https://github.com/gcovr/gcovr/issues/28

gcovr Documentation, Release 4.1

• Sort output for XML to facilitate baseline tests.

• Added error when the –object-directory option specifies a bad directory.

• Added more flexible XML testing, which can ignore XML elements that frequently change (e.g. timestamps).

• Added the ‘—xml-pretty’ option, which is used to generate pretty XML output for the user manual.

• Many documentation updates

6.8 2.4 (13 April 2012)

• New approach to walking the directory tree that is more robust to symbolic links (#3908)

• Normalize all reported path names

– Normalize using the full absolute path (#3921)

– Attempt to resolve files referenced through symlinks to a common project-relative path

• Process gcno files when there is no corresponding gcda file to provide coverage information for unexecuted
modules (#3887)

• Windows compatibility fixes

– Fix for how we parse source: file names (#3913)

– Better handling od EOL indicators (#3920)

• Fix so that gcovr cleans up all .gcov files, even those filtered by command line arguments

• Added compatibility with GCC 4.8 (#3918)

• Added a check to warn users who specify an empty --root option (see #3917)

• Force gcov to run with en_US localization, so the gcovr parser runs correctly on systems with non-English
locales (#3898, #3902).

• Segregate warning/error information onto the stderr stream (#3924)

• Miscellaneous (Python 3.x) portability fixes

• Added the master svn revision number as part of the verson identifier

6.9 2.3.1 (6 January 2012)

• Adding support for Python 3.x

6.10 2.3 (11 December 2011)

• Adding the --gcov-filter and --gcov-exclude options.

28 Chapter 6. Change Log

gcovr Documentation, Release 4.1

6.11 2.2 (10 December 2011)

• Added a test driver for gcovr.

• Improved estimation of the <sources> element when using gcovr with filters.

• Added revision and date keywords to gcovr so it is easier to identify what version of the script users are using
(especially when they are running a snapshot from trunk).

• Addressed special case mentioned in [comment:ticket:3884:1]: do not truncate the reported file name if the filter
does not start matching at the beginning of the string.

• Overhaul of the --root / --filter logic. This should resolve the issue raised in #3884, along with the more
general filter issue raised in [comment:ticket:3884:1]

• Overhaul of gcovr’s logic for determining gcc/g++’s original working directory. This resolves issues introduced
in the original implementation of --object-directory (#3872, #3883).

• Bugfix: gcovr was only including a <sources> element in the XML report if the user specified -r (#3869)

• Adding timestamp and version attributes to the gcovr XML report (see #3877). It looks like the standard Cober-
tura output reports number of seconds since the epoch for the timestamp and a doted decimal version string.
Now, gcovr reports seconds since the epoch and “gcovr ``"+``__version__ (e.g. “gcovr 2.2”) to dif-
ferentiate it from a pure Cobertura report.

6.12 2.1 (26 November 2010)

• Added the --object-directory option, which allows for a flexible specification of the directory that
contains the objects generated by gcov.

• Adding fix to compare the absolute path of a filename to an exclusion pattern.

• Adding error checking when no coverage results are found. The line and branch counts can be zero.

• Adding logic to process the -o/--output option (#3870).

• Adding patch to scan for lines that look like:

creating `foo'

as well as

creating 'foo'

• Changing the semantics for EOL to be portable for MS Windows.

• Add attributes to xml format so that it could be used by hudson/bamboo with cobertura plug-in.

6.13 2.0 (22 August 2010)

• Initial release as a separate package. Earlier versions of gcovr were managed within the ‘fast’ Python package.

6.11. 2.2 (10 December 2011) 29

gcovr Documentation, Release 4.1

30 Chapter 6. Change Log

CHAPTER 7

License

Copyright 2013-2018 the gcovr authors

Copyright 2013 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.

Gcovr is available under the 3-clause BSD License. See LICENSE.txt for full details. See AUTHORS.txt for the full
list of contributors.

Gcovr development moved to this repository in September, 2013 from Sandia National Laboratories.

31

gcovr Documentation, Release 4.1

32 Chapter 7. License

Index

Symbols
–exclude-directories <exclude_dirs>

gcovr command line option, 12
–exclude-unreachable-branches

gcovr command line option, 12
–fail-under-branch <min>

gcovr command line option, 11
–fail-under-line <min>

gcovr command line option, 11
–gcov-exclude <gcov_exclude>

gcovr command line option, 12
–gcov-executable <gcov_cmd>

gcovr command line option, 12
–gcov-filter <gcov_filter>

gcovr command line option, 12
–gcov-ignore-parse-errors

gcovr command line option, 12
–html

gcovr command line option, 11
–html-absolute-paths

gcovr command line option, 12
–html-details

gcovr command line option, 12
–html-encoding <html_encoding>

gcovr command line option, 12
–html-high-threshold <high>

gcovr command line option, 11
–html-medium-threshold <medium>

gcovr command line option, 11
–html-title <title>

gcovr command line option, 12
–object-directory <objdir>

gcovr command line option, 13
–source-encoding <source_encoding>

gcovr command line option, 11
–version

gcovr command line option, 11
–xml-pretty

gcovr command line option, 11

-b, –branches
gcovr command line option, 11

-d, –delete
gcovr command line option, 13

-e <exclude>, –exclude <exclude>
gcovr command line option, 12

-f <filter>, –filter <filter>
gcovr command line option, 12

-g, –use-gcov-files
gcovr command line option, 12

-h, –help
gcovr command line option, 11

-j <gcov_parallel>
gcovr command line option, 13

-k, –keep
gcovr command line option, 13

-o <output>, –output <output>
gcovr command line option, 11

-p, –sort-percentage
gcovr command line option, 11

-r <root>, –root <root>
gcovr command line option, 11

-s, –print-summary
gcovr command line option, 12

-u, –sort-uncovered
gcovr command line option, 11

-v, –verbose
gcovr command line option, 11

-x, –xml
gcovr command line option, 11

G
gcovr command line option

–exclude-directories <exclude_dirs>, 12
–exclude-unreachable-branches, 12
–fail-under-branch <min>, 11
–fail-under-line <min>, 11
–gcov-exclude <gcov_exclude>, 12
–gcov-executable <gcov_cmd>, 12
–gcov-filter <gcov_filter>, 12

33

gcovr Documentation, Release 4.1

–gcov-ignore-parse-errors, 12
–html, 11
–html-absolute-paths, 12
–html-details, 12
–html-encoding <html_encoding>, 12
–html-high-threshold <high>, 11
–html-medium-threshold <medium>, 11
–html-title <title>, 12
–object-directory <objdir>, 13
–source-encoding <source_encoding>, 11
–version, 11
–xml-pretty, 11
-b, –branches, 11
-d, –delete, 13
-e <exclude>, –exclude <exclude>, 12
-f <filter>, –filter <filter>, 12
-g, –use-gcov-files, 12
-h, –help, 11
-j <gcov_parallel>, 13
-k, –keep, 13
-o <output>, –output <output>, 11
-p, –sort-percentage, 11
-r <root>, –root <root>, 11
-s, –print-summary, 12
-u, –sort-uncovered, 11
-v, –verbose, 11
-x, –xml, 11
search_paths, 11

P
Python Enhancement Proposals

PEP 8, 22

S
search_paths

gcovr command line option, 11

34 Index

	Installation
	Gcovr User Guide
	Getting Started
	The gcovr Command
	Using Filters
	Acknowledgements

	Gcovr Cookbook
	How to collect coverage for C extensions in Python

	Frequently Asked Questions
	What is the difference between lcov and gcovr?

	Contributing
	How to report bugs
	How to help
	How to submit a Pull Request
	How to set up a development environment
	Project Structure
	Test suite
	Become a gcovr developer

	Change Log
	4.1 (2 July 2018)
	4.0 (17 June 2018)
	3.4 (12 February 2018)
	3.3 (6 August 2016)
	3.2 (5 July 2014)
	3.1 (6 December 2013)
	3.0 (10 August 2013)
	2.4 (13 April 2012)
	2.3.1 (6 January 2012)
	2.3 (11 December 2011)
	2.2 (10 December 2011)
	2.1 (26 November 2010)
	2.0 (22 August 2010)

	License

