
gcovr Documentation
Release 7.1

the gcovr authors

Feb 24, 2024





CONTENTS:

1 Installation 3

2 Getting Started 5
2.1 What to read next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 User Guide 7
3.1 Compiling for Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 GCOV parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Output Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Multiple Output Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Merging Coverage Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Using Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8 Exclusion Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9 Reproducible Timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Command Line Reference 35
4.1 gcovr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Cookbook 43
5.1 How to collect coverage for C extensions in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Out-of-Source Builds with CMake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Support of Keil uVision format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 How to create a standalone application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Frequently Asked Questions 47
6.1 What is the difference between lcov and gcovr? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Why does C++ code have so many uncovered branches? . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Why are uncovered files not reported? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 Which options are used for calling gcov? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Contributing 49
7.1 How to report bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 How to help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3 How to submit a Pull Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4 How to set up a development environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.5 Project Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.6 Test suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.7 Become a gcovr developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Change Log 57

i



8.1 7.1 (24 February 2024) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2 7.0 (25 January 2024) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.3 6.0 (08 March 2023) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.4 5.2 (06 August 2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.5 5.1 (26 March 2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.6 5.0 (11 June 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.7 4.2 (6 November 2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.8 4.1 (2 July 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.9 4.0 (17 June 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.10 3.4 (12 February 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.11 3.3 (6 August 2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.12 3.2 (5 July 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.13 3.1 (6 December 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.14 3.0 (10 August 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.15 2.4 (13 April 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.16 2.3.1 (6 January 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.17 2.3 (11 December 2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.18 2.2 (10 December 2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.19 2.1 (26 November 2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.20 2.0 (22 August 2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9 License 73
9.1 License Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.2 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Index 75

ii



gcovr Documentation, Release 7.1

Gcovr provides a utility for managing the use of the GNU gcov utility and generating summarized code coverage results.
This command is inspired by the Python coverage.py package, which provides a similar utility for Python.

The gcovr command can produce different kinds of coverage reports:

CLI Option User Guide Description
default, --txt Text Output compact human-readable summaries
--html HTML Output overview of all files
--html-details HTML Output annotated source files
--html-template-dir HTML Output use custom set of Jinja2 templates
--csv CSV Output CSV report summarizing the coverage of each file
--json JSON Output JSON report with source file structure and coverage
--json-summary JSON Output JSON summary coverage report
--clover Clover XML Output machine readable XML reports in Clover format
--cobertura Cobertura XML Output machine readable XML reports in Cobertura format
--coveralls Coveralls JSON Output machine readable JSON report in Coveralls format
--jacoco JaCoCo XML Output machine readable XML reports in JaCoCo format
--lcov LCOV info Output machine readable report in LCOV info format
--sonarqube SonarQube XML Output machine readable XML reports in SonarQube format

Thus, gcovr can be viewed as a command-line alternative to the lcov utility, which runs gcov and generates an HTML-
formatted report. The development of gcovr was motivated by the need for text summaries and XML reports.

Quick Links

• Getting Help

– Submit a ticket

– Stack Overflow

– Chat on Gitter

• Install from PyPI: pip install gcovr

• Source Code on GitHub

• Change Log

This documentation (https://gcovr.com/) describes gcovr 7.1.

CONTENTS: 1

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://coverage.readthedocs.io/en/stable/
https://bitbucket.org/atlassian/clover/src/master/
http://cobertura.sourceforge.net/
https://coveralls.io/
https://www.eclemma.org/jacoco/
https://github.com/linux-test-project/lcov
https://www.sonarsource.com/products/sonarqube/
https://github.com/linux-test-project/lcov
https://github.com/gcovr/gcovr/issues
https://stackoverflow.com/questions/tagged/gcovr
https://gitter.im/gcovr/gcovr
https://pypi.org/project/gcovr/
https://github.com/gcovr/gcovr
https://gcovr.com/
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CHAPTER

ONE

INSTALLATION

Gcovr is available as a Python package that can be installed via pip.

Install newest stable gcovr release from PyPI:

pip install gcovr

Install development version from GitHub:

pip install git+https://github.com/gcovr/gcovr.git

Which environments does gcovr support?

Python:
3.8+.

The automated tests run on CPython (versions 3.8, 3.9, 3.10, 3.11) and a compatible PyPy3. Gcovr will only run
on Python versions with upstream support.

Last gcovr release for old Python versions:

Python gcovr
2.6 3.4
2.7 4.2
3.4 4.1
3.5 4.2
3.6 5.0
3.7 6.0

Operating System:
Linux, Windows, and macOS.

The automated tests run on Ubuntu 20.04, 22.04 and Windows Server 2019.

Compiler:
GCC and Clang.

The automated tests run on GCC 5, 6, 8, 9, 10, 11 and clang 10, 13, 14, and 15.

3
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CHAPTER

TWO

GETTING STARTED

The gcovr command provides a summary of the lines that have been executed in a program. Code coverage statistics
help you discover untested parts of a program, which is particularly important when assessing code quality. Well-
tested code is a characteristic of high quality code, and software developers often assess code coverage statistics when
deciding if software is ready for a release.

GCC can instrument the executables to emit coverage data. You need to recompile your code with the following flags:

--coverage -g -O0

Next, run your test suite. This will generate raw coverage files.

Finally, invoke gcovr. This will print a tabular report on the console.

gcovr

You can also generate detailed or nested HTML reports:

gcovr --html-details coverage.html
gcovr --html-nested coverage.html

Gcovr will create one HTML report per source file and for --html-nested also per directory next to the coverage.html
summary.

You should run gcovr from the build directory. The -r option should point to the root of your project. This only matters
if you have a separate build directory. For example:

cd build; gcovr -r ..

2.1 What to read next

The User Guide explains how to use the features of gcovr. In particular:

• Compiling for Coverage

• Output Formats

• Using Filters

The Command Line Reference provides an overview of all options.

Specific problems might be addressed in the Cookbook or the Frequently Asked Questions.

5
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CHAPTER

THREE

USER GUIDE

The user guide describes the various features of gcovr. It assumes you have read the Getting Started guide.

This User Guide provides the following sections:

3.1 Compiling for Coverage

In order to collect coverage data, your software must be “instrumented” by the compiler. That means, you must re-
compile your software with special compiler options.

The general workflow is:

1. compile your software to enable coverage profiling

2. execute your software to collect coverage profiles

3. run gcovr to create reports from the collected coverage profiling data

This document explains how you can use GCC or Clang to compile with coverage instrumentation.

If you cannot compile your software with coverage flags, you cannot use gcovr. However, other tools like kcov might
help.

3.1.1 Example Code

The following example.cpp program is used to illustrate the compilation process:

1 // example.cpp
2
3 int foo(int param)
4 {
5 if (param)
6 {
7 return 1;
8 }
9 else
10 {
11 return 0;
12 }
13 }
14
15 int main(int argc, char* argv[])
16 {

7
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17 foo(0);
18
19 return 0;
20 }

This code executes several subroutines in this program, but some lines in the program are not executed.

3.1.2 Compiler Options

We compile example.cpp with the GCC compiler as follows:

g++ -fprofile-arcs -ftest-coverage -fPIC -O0 example.cpp -o program

What do these compiler flags mean?

• We compile without optimization (-O0), because optimizations may merge lines of code or otherwise change the
flow of execution in the program. This can change the measured coverage.

On the other hand, enabling basic optimizations with -O1 can sometimes produce “better” coverage reports,
especially for C++. This is a matter of personal preference, just make sure to avoid comparing coverage metrics
across optimization levels.

If you are having problems with lots of uncovered branches, see: Why does C++ code have so many uncovered
branches?

• Either --coverage or -fprofile-arcs -ftest-coverage are needed so that the compiler produces the
information necessary to gather coverage data.

With these options, the compiler adds logic to the output program that counts how often which part of the code
was executed. The compiler will also create a example.gcno file with metadata. The name of the gcno file
matches the compilation unit (see below).

Optional compiler flags:

• You can use other flags like -g or -fPIC as required by your tests. These don’t affect the coverage results.

• Using -fprofile-abs-path (available since GCC 8) can avoid some problems with interpreting the coverage
data correctly. By default, the additional coverage files generated by GCC contain relative paths from the working
directory to the source files. If there are multiple potential working directories from which you might have run
the compiler, gcovr can get confused. Adding this option is more robust.

This examples uses the g++ compiler for C++ code, but any GCC or Clang-based compiler should work.

If you are using CMake, see Out-of-Source Builds with CMake for information on configuring that build system to
compile your software with coverage enabled.

3.1.3 Running the Program

The above compiler invocation generated a program executable. Now, we have to execute this command:

./program

This will run whatever you designed this program to do. Often, such a program would contain unit tests to exercise
your code.

As a side effect, this will create an example.gcda file with the coverage data for our compilation unit. This is a binary
file so it needs to be processed first. Together, the .gcda and .gcno files can be used to create coverage reports.

8 Chapter 3. User Guide
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3.1.4 Processing Coverage

Your compiler ships with tools to analyze the coverage data files. For GCC, this is gcov. For Clang, this is llvm-cov.
You don’t have to call these programs yourself – gcovr will do that for you.

So let’s invoke gcovr:

gcovr --txt example.txt

This will search for all your .gcno and .gcda files, run the compiler’s gcov tool, and summarize the code coverage
statistics into a report. By default, we get a text summary on the command line that shows aggregate statistics for each
line:

------------------------------------------------------------------------------
GCC Code Coverage Report

Directory: .
------------------------------------------------------------------------------
File Lines Exec Cover Missing
------------------------------------------------------------------------------
example.cpp 7 6 85% 7
------------------------------------------------------------------------------
TOTAL 7 6 85%
------------------------------------------------------------------------------

Gcovr supports many different Output Formats that you can generate instead.

3.1.5 Choosing the Right Gcov Executable

If you have multiple compilers installed or if you are using Clang, you will likely need to tell gcovr which gcov exe-
cutable to use. By default, gcovr just uses the program named gcov. This is fine for the default GCC compiler, e.g.
gcc or g++. Otherwise, you must use the --gcov-executable to tell gcovr what to use.

If you have used a specific GCC version (e.g. gcc-8 or g++-8), then you must name the gcov tool with the correspond-
ing version. For example:

gcovr --gcov-executable gcov-8

If you have used Clang, then you can use its gcov emulation mode. For example:

gcovr --gcov-executable "llvm-cov gcov"

Again, the llvm-cov name may have to include your compiler version.

3.1.6 Working with Multiple Object Files

Code coverage instrumentation works on a per object file basis, which means you have to re-compile your entire project
to collect coverage data.

The C/C++ model has a concept of “compilation units”. A large project is typically not compiled in one go, but in
separate steps. The result of compiling a compilation unit is a .o object file with the machine code. The object code
from multiple compilation units is later linked into the final executable or library. The previous example only had a
single compilation unit, so no explicit linking step was necessary.

Because each compilation unit is compiled independently, every one has to be instrumented with coverage counters
separately. A common mistake is to add the compiler flags for coverage (e.g. in the CFLAGS or CXXFLAGS variables)
but then forgetting to force a re-compile. Depending on the build system, it may be necessary to clear out the old object

3.1. Compiling for Coverage 9
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files that weren’t compiled with coverage, e.g. with a make clean command. Other build systems use a separate build
directory when compiling with coverage so that incremental compilation works as expected.

Each object file will have an associated .gcno and .gcda file in the same directory as the .o object file. For example,
consider the following compilation process:

# (1) compile to object code
g++ --coverage -c -o a.o a.cpp
g++ --coverage -c -o b.o b.cpp

# (2) link the object files in the program
g++ --coverage -o the-program a.o b.o

# (3) run the program
./the-program

1. Compiling the object code creates the a.o and b.o object files, but also corresponding a.gcno and b.gcno
notes files, one for each compilation unit. The -c option is used to only compile but to not link the code.

2. Linking the object code produces the final program. This has no effect on coverage processing, except that the
--coverage flag makes sure that a compiler-internal gcov support library is linked.

3. Running the program will increment the in-memory coverage counters for all executed lines. At the end, the
counters are written into gcov data files, one for each compilation unit. Here, we would get a.gcda and b.gcda
files.

If you only want coverage data for certain source files, it is sufficient to only compile those compilation units with
coverage enabled that contain these source files. But this can be tricky to do correctly. For example, header files are
often part of multiple compilation units.

3.2 GCOV parser

The behavior of this parser was informed by the following sources:

• the old GcovParser class <https://github.com/gcovr/gcovr/blob/e0b7afef00123b7b6ce4f487a1c4cc9fc60528bc/
gcovr/gcov.py#L239>

• the Invoking Gcov section in the GCC manual (version 11) <https://gcc.gnu.org/onlinedocs/gcc-11.1.0/gcc/
Invoking-Gcov.html>

• the gcov.c source code in GCC (especially for understanding the exact number format) <https://github.com/
gcc-mirror/gcc/blob/releases/gcc-11.1.0/gcc/gcov.c>

3.2.1 Error handling

By default the parser raises an exception on unrecognized gcov output.

There are several known issues with the files generated by gcov which can be handled by
--gcov-ignore-parse-errors which are descriped here. If no value is given to the option the value all is
used the whole gcov file is ignored if the output is not recognized.

10 Chapter 3. User Guide
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Negative hit counts

A bug in gcov can produce negative hit values (see gcov comment) which are not accepted by default.
This behavior can be changed by using the value --gcov-ignore-parse-errors=negative_hits.warn or
--gcov-ignore-parse-errors=negative_hits.warn_once_per_file. The first form warns on every line with
a negative value the second one only once per processed file and adds a summary with the overall issues in the file.

3.3 Output Formats

Gcovr supports a variety of output formats that are documented on the following pages.

3.3.1 Text Output

The text output format summarizes coverage in a plain-text table. This is the default output format if no other format
is selected. This output format can also be explicitly selected with the gcovr --txt option.

New in version 5.0: Added explicit --txt option.

Example output:

------------------------------------------------------------------------------
GCC Code Coverage Report

Directory: .
------------------------------------------------------------------------------
File Lines Exec Cover Missing
------------------------------------------------------------------------------
example.cpp 7 6 85% 7
------------------------------------------------------------------------------
TOTAL 7 6 85%
------------------------------------------------------------------------------

Line Coverage

Running gcovr without any explicit output formats . . .

gcovr --txt example.txt

generates a text summary of the lines executed:

------------------------------------------------------------------------------
GCC Code Coverage Report

Directory: .
------------------------------------------------------------------------------
File Lines Exec Cover Missing
------------------------------------------------------------------------------
example.cpp 7 6 85% 7
------------------------------------------------------------------------------
TOTAL 7 6 85%
------------------------------------------------------------------------------

The same result can be achieved when explicit --txt option is set. For example:

3.3. Output Formats 11
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gcovr --txt

generates the same text summary.

Each line of this output includes a summary for a given source file, including the number of lines instrumented, the
number of lines executed, the percentage of lines executed, and a summary of the line numbers that were not executed.
To improve clarity, gcovr uses an aggressive approach to grouping uncovered lines and will combine uncovered lines
separated by “non-code” lines (blank, freestanding braces, and single-line comments) into a single region. As a result,
the number of lines listed in the “Missing” list may be greater than the difference of the “Lines” and “Exec” columns.

Note that gcov accumulates statistics by line. Consequently, it works best with a programming style that places only
one statement on each line.

Branch Coverage

The gcovr command can also summarize branch coverage using the -b/--branches option:

gcovr --txt-metric branch --txt example_branches.txt

This generates a tabular output that summarizes the number of branches, the number of branches taken and the branches
that were not completely covered:

------------------------------------------------------------------------------
GCC Code Coverage Report

Directory: .
------------------------------------------------------------------------------
File Branches Taken Cover Missing
------------------------------------------------------------------------------
example.cpp 2 1 50% 5
------------------------------------------------------------------------------
TOTAL 2 1 50%
------------------------------------------------------------------------------

The same result can be achieved when explicit --txt option is set. For example:

gcovr --branches --txt

prints the same tabular output.

3.3.2 HTML Output

The gcovr command can also generate a simple HTML output using the --html option:

gcovr --html example_html.html

This generates a HTML summary of the lines executed. In this example, the file example_html.html is generated,
which has the following output:

12 Chapter 3. User Guide
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The default behavior of the --html option is to generate HTML for a single webpage that summarizes the coverage
for all files. The HTML is printed to standard output, but the -o/--output option is used to specify a file that stores
the HTML output.

The --html-details option is used to create a separate web page for each file. Each of these web pages includes the
contents of file with annotations that summarize code coverage. Consider the following command:

gcovr --html-details example_html.details.html

This generates the following HTML page for the file example.cpp:

3.3. Output Formats 13
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The --html-nested option is used to create a separate web page for each file and directory. Each of these web pages
includes the contents of file with annotations that summarize code coverage. Consider the following command:

Note that the --html and --html-details options need a named output, e.g. via the the -o/--output option. For
example, if the output is named coverage.html, then the web pages generated for each file will have names of the
form coverage.<filename>.html.

The --html-self-contained option controls whether assets like CSS styles are bundled into the HTML file.
The --html report defaults to self-contained mode. but --html-details and --html-nested default to
--no-html-self-contained in order to avoid problems with the Content Security Policy of some servers, espe-
cially Jenkins.

The --html-theme option controls the theme and color of html report.

Fig. 1: --html-theme green, --html-theme default.green

Fig. 2: --html-theme blue, --html-theme default.blue

The --html-template-dir option allows you to use an alternate directory with Jinja2 templates to fully customize
the HTML output in detail. If a template is missing from this directory the original is used. It is advised that you start by
copying the part you want to modify from the existing default theme templates or the existing github theme templates.
Keep in mind the template context data that is passed to these templates MAY change between release versions.

Note that you do not have to copy every single template and can copy and edit only the templates you wish to customize.

New in version 7.0: Added --html-template-dir

14 Chapter 3. User Guide
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Fig. 3: --html-theme github.green

Fig. 4: --html-theme github.blue

3.3. Output Formats 15
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Fig. 5: --html-theme github.dark-green

Fig. 6: --html-theme github.dark-blue
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New in version 6.0: Added --html-nested and --html-syntax-highlighting.

New in version 5.0: Added --html-self-contained and --no-html-self-contained .

Changed in version 5.0: Default to external CSS file for --html-details.

3.3.3 CSV Output

The --csv option output comma-separated values summarizing the coverage of each file. Consider the following
command:

gcovr --csv example_csv.csv

This generates an CSV:

filename,line_total,line_covered,line_percent,branch_total,branch_covered,branch_percent,
→˓function_total,function_covered,function_percent
example.cpp,7,6,0.857,2,1,0.5,2,2,1.0

Be carefule if you print the output of a CSV to STDOUT and redirect it to a file. According to RFC4180 the line
endings must be CRLF.

New in version 5.0: Added --csv.

3.3.4 JSON Output

The gcovr command can also generate a JSON output using the --json and --json-pretty options:

gcovr --json coverage.json

The --json-pretty option generates an indented JSON output that is easier to read.

If you just need a summary of the coverage information, similar to the tabulated text based output, you can use
--json-summary instead (see JSON Summary Output).

Multiple JSON files can be merged into the coverage data with sum of lines and branches execution, see Merging
Coverage Data.

See the JSON Format Reference for a description of the file format.

JSON Format Reference

The structure of the JSON input/output files is based on the GCC gcov JSON intermediate format, but with additional
keys specific to gcovr. Field names use snake_case. Gcovr-specific fields are prefixed with gcovr/....

The GCC gcov JSON format is documented at https://gcc.gnu.org/onlinedocs/gcc/Invoking-Gcov.html#
Invoking-Gcov.

The top level of the file looks like the following:

{
"gcovr/format_version": version,
"files": [file]

}
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gcovr/format_version: string
A version number string for the gcovr JSON format. This is versioned independently from gcovr itself. Con-
sumers of gcovr JSON reports should check that they are SemVer-compatible with the declared version. Gcovr
itself will only consume input files that match the exact version.

files: list
An unordered list of file entries.

File entries

Each file entry contains coverage data for one source file:

{
"file": filename,
"lines": [line],
"functions": [function]

}

file: string
Path to the source code file. If the source file is within the gcovr root directory, the path will be relative.

lines: list
An unordered list of line coverage entries.

functions: list
An unordered list of function entries.

Line entries

Each line entry contains coverage data for one line:

{
"branches": [branch],
"count": count,
"line_number": line_number,
"gcovr/excluded": excluded,
"gcovr/decision": decision

}

branches: list
A list of branch coverage entries.

count: int
How often this line was executed.

line_number: int
The 1-based line number to which this entry relates.

gcovr/excluded: boolean
True if coverage data for this line was explicitly excluded, in particular with Exclusion Markers. May be absent
if false.

gcovr/decision: object
The decision entry for this line, if any. Absent if there is no decision to report. Requires that --decisions
coverage analysis was enabled.
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If there is no line entry for a source code line, it either means that the compiler did not generate any code for that line,
or that gcovr ignored this coverage data due to heuristics.

The line entry should be interpreted as follows:

• if gcovr/excluded is true, the line should not be included in coverage reports.

• if count is 0, the line is uncovered

• if count is nonzero, the line is covered

Changed in version 6.0: The gcovr/excluded field can be absent if false.

Changed in version 6.0: The gcovr/noncode field was removed. Instead of generating noncode entries, the entire line
is skipped.

Branch entries

Each branch provides information about a branch on that line:

{
"count": count,
"fallthrough": fallthrough,
"throw": throw

}

This exactly matches the GCC gcov format.

count: int
How often this branch was taken.

fallthrough: boolean
Whether this is the “fallthrough” branch.

throw: boolean
Whether this is an exception-only branch.

Decision entries

Each decision summarizes the line’s branch coverage data:

{
"type": "uncheckable"

}

{
"type": "conditional",
"count_true": count_true,
"count_false": count_false

}

{
"type": "switch",
"count": count

}
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type: string
A tag/discriminator for the type of the decision.

type: “uncheckable”
Control flow was recognized on this line, but cannot be interpreted unambiguously.

No further fields.

type: “conditional”
This line represents simple control flow like an if or while.

count_true: int
How often the decision evaluated to “true”.

count_false: int
How often the decision evaluated to “false”.

Note that the true/false are heuristic guesses, and might also be inverted.

type: “switch”
This line is a switch-case.

count: int
How often this case was taken.

Function entries

Each function entry describes a line in the source file:

{
"name": name,
"lineno": lineno,
"execution_count": count,
"returned_count": count,
"branch_percent": percent,
"gcovr/excluded": excluded

}

name: string
The name of the function, mangled or demangled depending on compiler version. May be incompatible with
upstream GCC gcov JSON.

lineno: int
The line number (1-based) where this function was defined. Incompatible with GCC gcov JSON.

execution_count: int
How often this function was called.

returned_count: int
How often this function returned.

branch_percent: float
The branch coverage in percent (0.0 to 100.0).

gcovr/excluded: boolean
True if coverage data for this function was explicitly excluded, in particular with Exclusion Markers. May be
absent if false.

• if gcovr/excluded is true, the line should not be included in coverage reports.
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New in version 7.0: New returned_count and branch_percent field.

New in version 6.0: New gcovr/excluded field.

JSON Summary Output

The --json-summary option output coverage summary in a machine-readable format for additional post processing.
The format corresponds to the normal JSON output --json option, but without line-level details and with added
aggregated statistics. The --json-summary-pretty option generates an indented JSON summary output that is
easier to read. Consider the following command:

gcovr --json-summary-pretty --json-summary example_json_summary.json

This generates an indented JSON summary:

{
"branch_covered": 1,
"branch_percent": 50.0,
"branch_total": 2,
"files": [

{
"branch_covered": 1,
"branch_percent": 50.0,
"branch_total": 2,
"filename": "example.cpp",
"function_covered": 2,
"function_percent": 100.0,
"function_total": 2,
"line_covered": 6,
"line_percent": 85.7,
"line_total": 7

}
],
"function_covered": 2,
"function_percent": 100.0,
"function_total": 2,
"gcovr/summary_format_version": "0.6",
"line_covered": 6,
"line_percent": 85.7,
"line_total": 7,
"root": "."

}

New in version 5.0: Added --json-summary and --json-summary-pretty.
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JSON Summary Format Reference

The summary format follows the general structure of the JSON Format Reference, but removes line-level information
and adds aggregated statistics.

The top-level looks like:

{
"gcovr/summary_format_version": version,
"files: [file],
"root": path,
...statistics

}

gcovr/summary_format_version: string
A version number string for the summary format. This is versioned independently from gcovr and the full JSON
format. Consumers of gcovr JSON Summary reports should check that they are SemVer-compatible with the
declared version.

files: list
Unordered list of file summary entries.

root: string
Path to the gcovr root directory, useful for reconstructing the absolute path of source files. This root path is
relative to the output file, or to the current working directory if the report is printed to stdout.

. . . statistics
Project-level aggregated statistics. A NaN percentage (0/0) is reported as zero (0.0).

File summary entries

The file summary looks like:

{
"filename": path,
...statistics

}

filename: string
Path to the source file, relative to the gcovr root directory.

. . . statistics
File-level aggregated statistics. A NaN percentage (0/0) is reported as null.

Summary statistics

The root and file summaries contain the following additional fields:

...
"branch_covered": ...,
"branch_total": ...,
"branch_percent": ...,

"line_covered": ...,
(continues on next page)
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(continued from previous page)

"line_total": ...,
"line_percent": ...,

"function_covered": ...,
"function_total": ...,
"function_percent": ...,
...

These fields can be described by the glob expression {branch,line,function}_{covered,total,percent}.

ELEMENT_covered: int
How many elements were covered or executed.

ELEMENT_total: int
How many elements there are in total.

ELEMENT_percent: float
Percentage of covered elements (covered/total) in the range 0 to 100. Note that the different contexts differ in
their treatment of NaN values.

3.3.5 Clover XML Output

The gcovr command can generate a Cobertura XML output using the --clover and --clover-pretty options:

gcovr --clover-pretty --clover example_clover.xml

This generates an XML summary of the lines executed:

<?xml version='1.0' encoding='UTF-8'?>
<coverage clover="1708813925" generated="1708813925">
<project timestamp="1708813925">
<metrics complexity="0" elements="7" coveredelements="6" conditionals="0"␣

→˓coveredconditionals="0" statements="0" coveredstatements="0" coveredmethods="0"␣
→˓methods="0" packages="1" classes="1" files="1" loc="19" ncloc="7"/>

<package name="root">
<metrics complexity="0" elements="7" coveredelements="6" conditionals="0"␣

→˓coveredconditionals="0" statements="0" coveredstatements="0" coveredmethods="0"␣
→˓methods="0" classes="1" files="1" loc="19" ncloc="7"/>

<file name="example.cpp" path="example.cpp">
<metrics complexity="0" elements="7" coveredelements="6" conditionals="0"␣

→˓coveredconditionals="0" statements="0" coveredstatements="0" coveredmethods="0"␣
→˓methods="0" classes="1" loc="19" ncloc="7"/>

<class name="id$9597a7a3397b8e3a48116e2a3afb4154">
<metrics complexity="0" elements="7" coveredelements="6" conditionals="0"␣

→˓coveredconditionals="0" statements="0" coveredstatements="0" coveredmethods="0"␣
→˓methods="0"/>

</class>
<line num="3" type="stmt" count="1"/>
<line num="5" type="stmt" count="1"/>
<line num="7" type="stmt" count="0"/>
<line num="11" type="stmt" count="1"/>
<line num="15" type="stmt" count="1"/>
<line num="17" type="stmt" count="1"/>
<line num="19" type="stmt" count="1"/>

(continues on next page)
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(continued from previous page)

</file>
</package>

</project>
<testproject timestamp="1708813925">
<metrics complexity="0" elements="0" coveredelements="0" conditionals="0"␣

→˓coveredconditionals="0" statements="0" coveredstatements="0" coveredmethods="0"␣
→˓methods="0"/>

<package name="dummy">
<metrics complexity="0" elements="0" coveredelements="0" conditionals="0"␣

→˓coveredconditionals="0" statements="0" coveredstatements="0" coveredmethods="0"␣
→˓methods="0"/>

<file name="dummy" path="dummy">
<metrics complexity="0" elements="0" coveredelements="0" conditionals="0"␣

→˓coveredconditionals="0" statements="0" coveredstatements="0" coveredmethods="0"␣
→˓methods="0"/>

<class name="id$275876e34cf609db118f3d84b799a790">
<metrics complexity="0" elements="0" coveredelements="0" conditionals="0"␣

→˓coveredconditionals="0" statements="0" coveredstatements="0" coveredmethods="0"␣
→˓methods="0"/>

</class>
</file>

</package>
</testproject>

</coverage>

This XML format is described in the Clover XML XSD suitable for import and display within the Atlassian Bamboo
continuous integration servers.

The --clover option generates a denser XML output, and the --clover-pretty option generates an indented XML
output that is easier to read.

New in version 7.1: Add --clover and --clover-pretty.

3.3.6 Cobertura XML Output

The gcovr command can generate a Cobertura XML output using the --cobertura and --cobertura-pretty
options:

gcovr --cobertura-pretty --cobertura example_cobertura.xml

This generates an XML summary of the lines executed:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE coverage SYSTEM 'http://cobertura.sourceforge.net/xml/coverage-04.dtd'>
<coverage line-rate="0.8571428571428571" branch-rate="0.5" lines-covered="6" lines-valid=
→˓"7" branches-covered="1" branches-valid="2" complexity="0.0" timestamp="1708813925"␣
→˓version="gcovr 7.1">
<sources>
<source>.</source>

</sources>
<packages>
<package name="" line-rate="0.8571428571428571" branch-rate="0.5" complexity="0.0">
<classes>

(continues on next page)
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(continued from previous page)

<class name="example_cpp" filename="example.cpp" line-rate="0.8571428571428571"␣
→˓branch-rate="0.5" complexity="0.0">

<methods/>
<lines>
<line number="3" hits="1" branch="false"/>
<line number="5" hits="1" branch="true" condition-coverage="50% (1/2)">
<conditions>
<condition number="0" type="jump" coverage="50%"/>

</conditions>
</line>
<line number="7" hits="0" branch="false"/>
<line number="11" hits="1" branch="false"/>
<line number="15" hits="1" branch="false"/>
<line number="17" hits="1" branch="false"/>
<line number="19" hits="1" branch="false"/>

</lines>
</class>

</classes>
</package>

</packages>
</coverage>

This XML format is described in the Cobertura XML DTD suitable for import and display within the Jenkins and
Hudson continuous integration servers using the Cobertura Plugin. Gcovr also supports a SonarQube XML Output.

The --cobertura option generates a denser XML output, and the --cobertura-pretty option generates an in-
dented XML output that is easier to read. Note that the XML output contains more information than the tabular sum-
mary. The tabular summary shows the percentage of covered lines, while the XML output includes branch statistics
and the number of times that each line was covered. Consequently, XML output can be used to support performance
optimization in the same manner that gcov does.

New in version 5.1: The --cobertura and --cobertura-pretty options were added as an alias for -x/--xml and
--xml-pretty, respectively. This avoids confusion with other XML output formats like SonarQube XML Output.
The old options remain available for backwards compatibility.

3.3.7 Coveralls JSON Output

If you are using Coveralls, you can get a coverage report in a suitable JSON format via the --coveralls option:

gcovr --coveralls coverage.json

The --coveralls-pretty option generates an indented JSON output that is easier to read.

Keep in mind that the output contains the checksums of the source files. If you are using different OSes, the line endings
shall be the same.

If available, environment variable COVERALLS_REPO_TOKEN will be consumed and baked into the JSON output.

If running in a CI additional variables are used:

• In Travis CI:

– TRAVIS_JOB_ID

– TRAVIS_BUILD_NUMBER

– TRAVIS_PULL_REQUEST
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– TRAVIS_COMMIT

– TRAVIS_BRANCH

• In Appveyor:

– APPVEYOR_JOB_ID

– APPVEYOR_JOB_NUMBER

– APPVEYOR_PULL_REQUEST_NUMBER

– APPVEYOR_REPO_COMMIT

– APPVEYOR_REPO_BRANCH

• In Jenkins CI:

– JOB_NAME

– BUILD_ID

– CHANGE_ID

– GIT_COMMIT (if available)

– BRANCH_NAME

• In GitHub Actions:

– GITHUB_WORKFLOW

– GITHUB_RUN_ID

– GITHUB_SHA

– GITHUB_HEAD_REF (if available)

– GITHUB_REF

The Coveralls JSON format is documented at https://docs.coveralls.io/api-introduction.

New in version 5.0: Added --coveralls and --coveralls-pretty.

3.3.8 SonarQube XML Output

If you are using SonarQube, you can get a coverage report in a suitable XML format via the --sonarqube option:

gcovr --sonarqube coverage.xml

The SonarQube XML format is documented at https://docs.sonarqube.org/latest/analysis/generic-test/.

3.3.9 JaCoCo XML Output

The gcovr command can generate a JaCoCo XML output using the --jacoco and --jacoco-pretty options:

gcovr --jacoco jacoco.xml

This XML format is described in the JaCoCo XML DTD.

The --jacoco option generates a denser XML output, and the --jacoco-pretty option generates an indented XML
output that is easier to read. Note that the XML output contains more information than the tabular summary. The tabular
summary shows the percentage of covered lines, while the XML output includes branch statistics and the number of
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times that each line was covered. Consequently, XML output can be used to support performance optimization in the
same manner that gcov does.

New in version 7.0: The --jacoco and --jacoco-pretty.

3.3.10 LCOV info Output

If you are using tools which handle LCOV info file you can get a coverage report in a suitable info format via the
--lcov option:

gcovr --lcov coverage.lcov

With following option you can set user defined fields in the coverage report:

• The --lcov-comment defines the optional comment.

• The --lcov-test-name changes the test name.

Keep in mind that the output contains the checksums of the source files. If you are using different OSes, the line endings
shall be the same.

The LCOV info format is documented at https://github.com/linux-test-project/lcov/blob/
07a1127c2b4390abf4a516e9763fb28a956a9ce4/man/geninfo.1#L989.

New in version 7.0: Added --lcov, --lcov-comment and --lcov-test-name.

You can use Multiple Output Formats at the same time.

3.4 Multiple Output Formats

You can write multiple report formats with one gcovr invocation by passing the output filename directly to the report
format flag. If no filename is specified for the format, the value from -o/--output is used by default, which itself
defaults to stdout.

The following report format flags can take an optional output file name:

• gcovr --txt

• gcovr --html

• gcovr --html-details

• gcovr --html-nested

• gcovr --csv

• gcovr --json

• gcovr --json-summary

• gcovr --clover

• gcovr --cobertura

• gcovr --coveralls

• gcovr --jacoco

• gcovr --lcov

• gcovr --sonarqube
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If the value given to the output option ends with a path separator (/ or \) it is used a directory which is created first
and a default filename depending on the format is used.

Note that --html-details and --html-nested override any value of --html if it is present.

3.5 Merging Coverage Data

You can merge coverage data from multiple runs with -a/--json-add-tracefile/--add-tracefile.

For each run, generate JSON output:

... # compile and run first test case
gcovr ... --json run-1.json
... # compile and run second test case
gcovr ... --json run-2.json

Next, merge the json files and generate the desired report:

gcovr --json-add-tracefile run-1.json --json-add-tracefile run-2.json --html-details␣
→˓coverage.html

You can also use unix style wildcards to merge the json files without duplicating -a/--json-add-tracefile/
--add-tracefile. With this option you have to place your pathnames with wildcards in double quotation marks:

gcovr --json-add-tracefile "run-*.json" --html-details coverage.html

If you want to merge coverage reports generated in different --root directories you can use the --json-base to get the
same root directory for all reports.

If you have same function names defined on different line the default behaviour is to abort. With the
--merge-mode-functions you can change this:

• strict: Abort if same function is defined on a different line (old behaviour).

• merge-use-line-0: Allow same function on different lines, in this case use line 0.

• merge-use-line-min: Allow same function on different lines, in this case the minimum line.

• merge-use-line-max: Allow same function on different lines, in this case use maximum line.

• separate: Allow same function on different lines. Instead of merging keep the functions separate.

New in version 6.0: The gcovr --json-base option. The gcovr --merge-mode-functions option.

3.6 Using Filters

Gcovr tries to only report coverage for files within your project, not for your libraries. This is influenced by the following
options:

• -r, --root

• -f , --filter

• -e, --exclude

• --gcov-filter

• --gcov-exclude
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• --gcov-exclude-directories

• (the current working directory where gcovr is invoked)

NOTE: Filters can also be specified in the gcovr configuration file: Configuration Files

These options take filters. A filter is a regular expression that matches a file path. Because filters are regexes, you will
have to escape “special” characters with a backslash \.

Always use forward slashes / as path separators, even on Windows:

• wrong: --filter C:\project\src\

• correct: --filter C:/project/src/

If the filter looks like an absolute path, it is matched against an absolute path. Otherwise, the filter is matched against
a relative path, where that path is relative to the current directory or if defined in a configuration file to the directory of
the file.

Examples of relative filters:

• --filter subdir/ matches only that subdirectory

• --filter '\.\./src/' matches a sibling directory ../src. But because a dot . matches any character in a
regex, we have to escape it. You have to use additional shell escaping. This example uses single quotes for Bash
or POSIX shell.

• --filter '(.+/)?foo\.c$' matches only files called foo.c. The regex must match from the start of the
relative path, so we ignore any leading directory parts with (.+/)?. The $ at the end ensures that the path ends
here.

If no -f/--filter is provided, the -r/--root is turned into a default filter. Therefore, files outside of the -r/--root
directory are excluded.

To be included in a report, the source file must match any -f/--filter, and must not match any -e/--exclude filter.

The --gcov-filter and --gcov-exclude filters apply to the .gcov files created by gcov. This is useful mostly
when running gcov yourself, and then invoking gcovr with -g/--gcov-use-existing-files. But these filters also
apply when gcov is launched by gcovr.

3.6.1 Speeding up coverage data search

The --gcov-exclude-directories filter is used while searching for raw coverage data (or for existing .gcov files
when -g/--gcov-use-existing-files/--use-gcov-files is active). This filter is matched against directory
paths, not file paths. If a directory matches, all its contents (files and subdirectories) will be excluded from the search.
For example, consider this build directory:

build/
main.o
main.gcda
main.gcno
a/

awesome_code.o
awesome_code.gcda
awesome_code.gcno

b/
better_code.o
better_code.gcda
better_code.gcno
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If we run gcovr --gcov-exclude-directories 'build/a$', this will exclude anything in the build/a directory
but will use the coverage data for better_code.o and main.o.

This can speed up gcovr when you have a complicated build directory structure. Consider also using the search_paths
or --gcov-object-directory arguments to specify where gcovr starts searching. Here you can also specify the gcda
or gcov file directly to get the coverage data for a specific file without searching a whole tree. If you are unsure which
directories are being searched, run gcovr in -v/--verbose mode.

For each found coverage data file gcovr will invoke the gcov tool. This is typically the slowest part, and other filters
can only be applied after this step. In some cases, parallel execution with the -j option might be helpful to speed up
processing.

New in version 7.0: search_paths also accept specific files

3.6.2 Filters for symlinks

Gcovr matches filters against real paths that have all their symlinks resolved. E.g. consider this project layout:

/home/you/
project/ (pwd)

src/
relevant-library/ -> ../external-library/
ignore-this/

external-library/
src/

Here, the relevant-library has the real path /home/you/external-library.

To write a filter that includes both src/ and relevant-library/src/, we cannot use --filter
relevant-library/src/ because that contains a symlink. Instead, we have to use an absolute path to the
real name:

gcovr --filter src/ --filter /home/you/external-library/src/

or a relative path to the real path:

gcovr --filter src/ --filter '\.\./external-library/src/'

New in version 5.1: gcovr also supports symlinks/junctions/drive substitutions on Windows.

3.6.3 More examples for filters

Excluding files inside build directory via --exclude with absolute path (Unix only):

-e '/.*/build/'

Excluding files inside build directory via --filter with relative path:

--filter '\.\./'
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3.7 Configuration Files

Warning: Config files are an experimental feature and may be subject to change without prior notice.

Defaults for the command line options can be set in a configuration file. Example:

filter = src/
html-details = yes # info about each source file
output = build/coverage.html

How the configuration file is found: If a --config option is provided, that file is used. Otherwise, a gcovr.cfg file
in the -r/--root directory is used, if that file exists.

Each line contains a key = value pair. Space around the = is optional. The value may be empty. Comments start
with a hash # and ignore the rest of the line, but cannot start within a word. Empty lines are also ignored.

The available config keys correspond closely to the command line options, and are parsed similarly. In most cases,
the name of a long command line option can be used as a config key. If not, this is documented in the option’s help
message. For example, --gcov-executable can be set via the gcov-executable config key. But -b/--branches
is set via txt-branch.

Just like command line options, the config keys can be specified multiple times. Depending on the option the last one
wins or a list will be built. For example, -f/--filter can be provided multiple times:

# Only show coverage for files in src/, lib/foo, or for main.cpp files.
filter = src/
filter = lib/foo/
filter = *./main\.cpp

Note that relative filters specified in config files will be interpreted relative to the location of the config file itself.

Option arguments are parsed with the following precedence:

• First the config file is parsed, if any.

• Then, all command line arguments are added.

• Finally, if an option was specified neither in a config file nor on the command line, its documented default value
is used.

Therefore, it doesn’t matter whether a value is provided in the config file or the command line.

Boolean flags are treated specially. When their config value is “yes” they are enabled, as if the flag had been provided
on the command line. When their value is “no”, they are explicitly disabled by assigning their default value. The -j flag
is special as it takes an optional argument. In the config file, gcov-parallel = yes would refer to the no-argument
form, whereas gcov-parallel = 4 would provide an explicit argument.

If the option is a path and is not absolute the path is used relative to the config file. For the option gcovr
--json-add-tracefile the directory of the config file is always prepended.

Some config file syntax is explicitly reserved for future extensions: Semicolon comments, INI-style sections, multi-line
values, quoted values, variable substitutions, alternative key–value separators, . . .

3.7. Configuration Files 31



gcovr Documentation, Release 7.1

3.8 Exclusion Markers

You can exclude parts of your code from coverage metrics.

• If GCOVR_EXCL_LINE appears within a line, that line is ignored.

• If GCOVR_EXCL_START appears within a line, all following lines (including the current line) are ignored until a
GCOVR_EXCL_STOP marker is encountered.

• If GCOVR_EXCL_BR_* markers are used the same exclusion rules apply as above, with the difference beeing that
they are only taken into account for branch coverage.

Instead of GCOVR_*, the markers may also start with GCOV_* or LCOV_*. However, start and stop markers must use the
same style. The prefix is configurable with the option --exclude-pattern-prefix.

The excluded region not includes the line with the stop marker:

code
code
excluded // GCOVR_EXCL_START
still excluded
...
still excluded
NOT excluded // GCOVR_EXCL_STOP
code
code

In the excluded regions, any coverage is excluded.

3.9 Reproducible Timestamps

In some cases, it may be desirable to list a specific timestamp in the report. Timestamps are shown in the HTML Output,
Coveralls JSON Output, and the Cobertura XML Output. This can be achieved via the --timestamp option or via
Using SOURCE_DATE_EPOCH environment variable. This option does not affect the modification times or other
filesystem metadata.

New in version 6.0: Respect environment variable SOURCE_DATE_EPOCH for default of gcovr --timestamp.

New in version 5.1: The gcovr --timestamp option.

3.9.1 Timestamp Syntax

The timestamp option understands different formats: Unix timestamps and RFC-3339 timestamps.

Unix timestamps (also known as Posix time or Epoch) are the number of seconds since 1 Jan 1970. These timestamps
are always resolved in the UTC timezone. Example usage:

gcovr --timestamp 1640606727

RFC 3339 specifies a reasonable subset of ISO-8601 timestamps. This is the YYYY-MM-DDThh:mm:ss format, option-
ally followed by a timezone offset (+hh:mm, or Z for UTC). Example usage without a timezone:

gcovr --timestamp '2021-12-27 13:05:27'

Example usages that show equivalent specifications for UTC timestamps:
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gcovr --timestamp '2021-12-27T13:05:27Z'
gcovr --timestamp '2021-12-27T13:05:27+00:00'
gcovr --timestamp '2021-12-27T13:05:27-00:00'

Differences and clarifications with respect to RFC-3339:

• the time zone may be omitted

• the date and time parts may be separated by a space character instead of the T

• the date is parsed in a case insensitive manner

• sub-second accuracy is not currently supported

Additional formats may be added in the future. To ensure that timestamps are handled in the expected manner, it is
possible to select a particular timestamp syntax with a prefix.

• Epoch timestamps can be selected with a @ or epoch: prefix.

• RFC-3339 timestamps can be selected with a rfc3339: prefix.

Examples of prefixes:

gcovr --timestamp @1640606727
gcovr --timestamp epoch:1640606727
gcovr --timestamp 'rfc3339:2021-12-27 13:05:27'

3.9.2 Using timestamps from Git commits

As an example of using the timestamp feature, we might want to attribute a coverage report to the time when a Git
commit was created. Git lets us extract the commit date from a commit with the git show command. For the current
HEAD commit:

git show --no-patch --format=%cI HEAD

This can be combined into a Bash one-liner like this:

gcovr --timestamp="$(git show --no-patch --format=%cI HEAD)"

Each Git commit has two dates, the author date and the committer date. This information can be extracted with various
format codes, e.g. %aI for the author date and %cI for the committer date. These format codes are also available in
different formats. The supported Git formats are:

• Unix timestamps: %at, %ct

• “Strict ISO” format: %aI, %cI

• depending on the --date option: %ad, %cd

Git’s --date option is documented in git log. The supported settings are:

• Unix timestamps: --date=unix

• “Strict ISO” format: --date=iso-strict, --date=iso8601-strict, --date=iso-strict-local,
--date=iso8601-strict-local
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3.9.3 Using SOURCE_DATE_EPOCH

The Reproducible Builds project defines the SOURCE_DATE_EPOCH variable. Gcovr will use this variable as a default
timestamp if no explicit --timestamp is set.

The contents of this variable must be an UTC epoch, without any prefix. No other format is supported. Example usage:

SOURCE_DATE_EPOCH=1640606727 gcovr

For more information on setting and using this variable, see the Reproducible Builds documentation on
SOURCE_DATE_EPOCH.

Related documents:

• Installation

• Getting Started

• Command Line Reference

• Cookbook

• Frequently Asked Questions

• Contributing (includes instructions for bug reports)

• Change Log

• License
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CHAPTER

FOUR

COMMAND LINE REFERENCE

The gcovr command recursively searches a directory tree to find gcov coverage files, and generates a text summary
of the code coverage. The -h/--help option generates the following summary of the gcovr command line options:

4.1 gcovr

A utility to run gcov and summarize the coverage in simple reports.

usage: gcovr [options] [search_paths...]

See <http://gcovr.com/> for the full manual.

4.1.1 Options

search_paths

Search paths for coverage files. Defaults to --root and --gcov-object-directory. If path is a file it is used directly.
Config key(s): search-path.

-h, --help

Show this help message, then exit.

--version

Print the version number, then exit.

-v, --verbose

Print progress messages. Please include this output in bug reports. Config key(s): verbose.

--no-color

Turn off colored logging. Is also set if environment variable NO_COLOR is present. Ignored if --force-color is
used. Config key(s): no-color.

--force-color

Force colored logging, this is the default for a terminal. Is also set if environment variable FORCE_COLOR is
present. Has presedence over --no-color. Config key(s): force-color.

-r <root>, --root <root>

The root directory of your source files. Defaults to ‘.’, the current directory. File names are reported relative to
this root. The --root is the default --filter. Config key(s): root.

--config <config>

Load that configuration file. Defaults to gcovr.cfg in the --root directory.
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--no-markers

Turn off exclusion markers. Any exclusion markers specified in source files will be ignored. Config key(s):
no-markers.

--fail-under-line <min>

Exit with a status of 2 if the total line coverage is less than MIN. Can be ORed with exit status of ‘--fail-under-
branch’, ‘--fail-under-decision’, and ‘--fail-under-function’ option. Config key(s): fail-under-line.

--fail-under-branch <min>

Exit with a status of 4 if the total branch coverage is less than MIN. Can be ORed with exit status of ‘--fail-under-
line’, ‘--fail-under-decision’, and ‘--fail-under-function’ option. Config key(s): fail-under-branch.

--fail-under-decision <min>

Exit with a status of 8 if the total decision coverage is less than MIN. Can be ORed with exit status of ‘--fail-
under-line’, ‘--fail-under-branch’, and ‘--fail-under-function’ option. Config key(s): fail-under-decision.

--fail-under-function <min>

Exit with a status of 16 if the total function coverage is less than MIN. Can be ORed with exit status of ‘--fail-
under-line’, ‘--fail-under-branch’, and ‘--fail-under-decision’ option. Config key(s): fail-under-function.

--source-encoding <source_encoding>

Select the source file encoding. Defaults to the system default encoding (UTF-8). Config key(s): source-
encoding.

--cobertura-add-tracefile <cobertura_add_tracefile>

Combine the coverage data from Cobertura XML files. When this option is used gcov is not run to collect the
new coverage data. Config key(s): cobertura-add-tracefile.

-a <json_add_tracefile>, --json-add-tracefile <json_add_tracefile>,
--add-tracefile <json_add_tracefile>

Combine the coverage data from JSON files. Coverage files contains source files structure relative to root direc-
tory. Those structures are combined in the output relative to the current root directory. Unix style wildcards can
be used to add the pathnames matching a specified pattern. In this case pattern must be set in double quotation
marks. Option can be specified multiple times. When option is used gcov is not run to collect the new coverage
data. Config key(s): add-tracefile.

--txt-report-covered

Report the covered lines instead of the uncovered. Config key(s): txt-covered.

--exclude-lines-by-pattern <exclude_lines_by_pattern>

Exclude lines that match this regex. Config key(s): exclude-lines-by-pattern.

--exclude-branches-by-pattern <exclude_branches_by_pattern>

Exclude branches that match this regex. Config key(s): exclude-branches-by-pattern.

--exclude-pattern-prefix <exclude_pattern_prefix>

Define the regex prefix used in markers / line exclusions (i.e . . . _EXCL_START, . . . _EXCL_START,
. . . _EXCL_STOP) Config key(s): exclude-pattern-prefix.
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4.1.2 Output Options

Gcovr prints a text report by default, but can switch to XML or HTML.

-o <output>, --output <output>

Print output to this filename. Defaults to stdout. Individual output formats can override this. Config key(s):
output.

--decisions

Report the decision coverage. For HTML, JSON, and the summary report. Config key(s): decisions.

--calls

Report the calls coverage. For HTML and the summary report. Config key(s): calls.

--sort-branches

Sort entries by branches instead of lines. Can only be used together with --sort-uncovered or --sort-percent is
used. Config key(s): sort-branches.

--sort {filename,uncovered-number,uncovered-percent}

Sort entries by filename, number or percent of uncovered lines or branches(if the option --sort-branches is given).
The default order is increasing and can be changed by --sort-reverse. The secondary sort key (if values are
identical) is always the ascending filename. For CSV, HTML, JSON, LCOV and text report. Config key(s): sort.

-u, --sort-uncovered

Deprecated, please use ‘--sort-key uncovered-number’ instead. Sort entries by number of uncovered lines or
branches (if the option --sort-branches is given). The default order is increasing and can be changed by --sort-
reverse. The secondary sort key (if values are identical) is always the ascending filename. For CSV, HTML,
JSON, LCOV and text report. Config key(s): sort-uncovered.

-p, --sort-percentage

Deprecated, please use ‘--sort-key uncovered-percent’ instead. Sort entries by percentage of uncovered lines or
branches (if the option --sort-branches is given). The default order is increasing and can be changed by --sort-
reverse. The secondary sort key (if values are identical) is always the ascending filename. For CSV, HTML,
JSON, LCOV and text report. Config key(s): sort-percentage.

--sort-reverse

Sort entries in reverse order (see --sort). Config key(s): sort_reverse.

--clover <output>

Generate a Clover XML report. OUTPUT is optional and defaults to --output. Config key(s): clover.

--clover-pretty

Pretty-print the Clover XML report. Implies --clover. Config key(s): clover-pretty.

--clover-project <clover_project>

The project name for the Clover XML report. Config key(s): clover-project.

--cobertura <output>, -x <output>, --xml <output>

Generate a Cobertura XML report. OUTPUT is optional and defaults to --output. Config key(s): cobertura, xml.

--cobertura-pretty, --xml-pretty

Pretty-print the Cobertura XML report. Implies --cobertura. Config key(s): cobertura-pretty, xml-pretty.

--coveralls <output>

Generate Coveralls API coverage report in this file name. OUTPUT is optional and defaults to --output. Config
key(s): coveralls.
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--coveralls-pretty

Pretty-print the coveralls report. Implies --coveralls. Config key(s): coveralls-pretty.

--csv <output>

Generate a CSV summary report. OUTPUT is optional and defaults to --output. Config key(s): csv.

--html <output>

Generate a HTML report. OUTPUT is optional and defaults to --output. Config key(s): html.

--html-details <output>

Add annotated source code reports to the HTML report. Implies --html, can not be used together with --html-
nested. OUTPUT is optional and defaults to --output. Config key(s): html-details.

--html-nested <output>

Add annotated source code reports to the HTML report. A page is created for each directory that summarize
subdirectories with aggregated statistics. Implies --html, can not be used together with --html-details. OUTPUT
is optional and defaults to --output. Config key(s): html-nested.

--html-template-dir <output>

Override the default Jinja2 template directory for the HTML report. Config key(s): html-template-dir.

--html-syntax-highlighting, --html-details-syntax-highlighting

Use syntax highlighting in HTML source page. Enabled by default. Negation: --no-html-syntax-highlighting, --
no-html-details-syntax-highlighting. Config key(s): html-syntax-highlighting, html-details-syntax-highlighting.

--html-theme {green,blue,github.blue,github.green,github.dark-green,github.dark-blue}

Override the default color theme for the HTML report. Default is green. Config key(s): html-theme.

--html-css <css>

Override the default style sheet for the HTML report. Config key(s): html-css.

--html-title <title>

Use TITLE as title for the HTML report. Default is ‘GCC Code Coverage Report’. Config key(s): html-title.

--html-medium-threshold <medium>

If the coverage is below MEDIUM, the value is marked as low coverage in the HTML report. MEDIUM has
to be lower than or equal to value of --html-high-threshold and greater than 0. If MEDIUM is equal to value of
--html-high-threshold the report has only high and low coverage. Default is 75.0. Config key(s): html-medium-
threshold.

--html-high-threshold <high>

If the coverage is below HIGH, the value is marked as medium coverage in the HTML report. HIGH has to be
greater than or equal to value of --html-medium-threshold. If HIGH is equal to value of --html-medium-threshold
the report has only high and low coverage. Default is 90.0. Config key(s): html-high-threshold.

--html-medium-threshold-branch <medium_branch>

If the coverage is below MEDIUM_BRANCH, the value is marked as low coverage in the HTML report.
MEDIUM_BRANCH has to be lower than or equal to value of --html-high-threshold-branch and greater than 0.
If MEDIUM_BRANCH is equal to value of --html-medium-threshold-branch the report has only high and low
coverage. Default is taken from --html-medium-threshold. Config key(s): html-medium-threshold-branch.

--html-high-threshold-branch <high_branch>

If the coverage is below HIGH_BRANCH, the value is marked as medium coverage in the HTML re-
port. HIGH_BRANCH has to be greater than or equal to value of --html-medium-threshold-branch. If
HIGH_BRANCH is equal to value of --html-medium-threshold-branch the report has only high and low cov-
erage. Default is taken from --html-high-threshold. Config key(s): html-high-threshold-branch.
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--html-medium-threshold-line <medium_line>

If the coverage is below MEDIUM_LINE, the value is marked as low coverage in the HTML report.
MEDIUM_LINE has to be lower than or equal to value of --html-high-threshold-line and greater than 0. If
MEDIUM_LINE is equal to value of --html-medium-threshold-line the report has only high and low coverage.
Default is taken from --html-medium-threshold. Config key(s): html-medium-threshold-line.

--html-high-threshold-line <high_line>

If the coverage is below HIGH_LINE, the value is marked as medium coverage in the HTML report. HIGH_LINE
has to be greater than or equal to value of --html-medium-threshold-line. If HIGH_LINE is equal to value of
--html-medium-threshold-line the report has only high and low coverage. Default is taken from --html-high-
threshold. Config key(s): html-high-threshold-line.

--html-tab-size <html_tab_size>

Used spaces for a tab in a source file. Default is 4 Config key(s): html-tab-size.

--html-absolute-paths

Use absolute paths to link the --html-details reports. Defaults to relative links. Config key(s): html-absolute-
paths.

--html-encoding <html_encoding>

Override the declared HTML report encoding. Defaults to UTF-8. See also --source-encoding. Config key(s):
html-encoding.

--html-self-contained

Control whether the HTML report bundles resources like CSS styles. Self-contained reports can be sent via
email, but conflict with the Content Security Policy of some web servers. Defaults to self-contained reports
unless --html-details is used. Negation: --no-html-self-contained. Config key(s): html-self-contained.

--jacoco <output>

Generate a JaCoCo XML report. OUTPUT is optional and defaults to --output. Config key(s): jacoco.

--jacoco-pretty

Pretty-print the JaCoCo XML report. Implies --jacoco. Config key(s): jacoco-pretty.

--json <output>

Generate a JSON report. OUTPUT is optional and defaults to --output. Config key(s): json.

--json-pretty

Pretty-print the JSON report. Implies --json. Config key(s): json-pretty.

--json-summary <output>

Generate a JSON summary report. OUTPUT is optional and defaults to --output. Config key(s): json-summary.

--json-summary-pretty

Pretty-print the JSON SUMMARY report. Implies --json-summary. Config key(s): json-summary-pretty.

--json-base <path>

Prepend the given path to all file paths in JSON report. Config key(s): json-base.

--lcov <output>

Generate a LCOV info file. OUTPUT is optional and defaults to --output. Config key(s): lcov.

--lcov-comment <comment>

The comment used in LCOV file. Config key(s): lcov-comment.

--lcov-test-name <name>

The name used for TN in LCOV file. Default is ‘GCOVR report’. Config key(s): lcov-test-name.
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--sonarqube <output>

Generate sonarqube generic coverage report in this file name. OUTPUT is optional and defaults to --output.
Config key(s): sonarqube.

--txt-metric {line,branch,decision}

The metric type to report. Config key(s): txt-metric.

-b, --txt-branches, --branches

Deprecated, please use ‘--txt-metric branch’ instead.Report the branch coverage instead of the line coverage in
text report. Config key(s): txt-branch.

--txt <output>

Generate a text report. OUTPUT is optional and defaults to --output. Config key(s): txt.

-s, --txt-summary, --print-summary

Print a small report to stdout with line & function & branch percentage coverage optional parts are decision &
call coverage. This is in addition to other reports. Config key(s): txt-summary, print-summary.

--timestamp <timestamp>

Override current time for reproducible reports. Can use YYYY-MM-DD hh:mm:ss or epoch notation. Used by
HTML, Coveralls, and Cobertura reports. Default is taken from environment variable SOURCE_DATE_EPOCH
(see https://reproducible-builds.org/docs/source-date-epoch) or current time. Config key(s): timestamp.

4.1.3 Filter Options

Filters decide which files are included in the report. Any filter must match, and no exclude filter must match. A filter
is a regular expression that matches a path. Filter paths use forward slashes, even on Windows. If the filter looks like
an absolute path it is matched against an absolute path. Otherwise, the filter is matched against a relative path, where
that path is relative to the current directory or if defined in a configuration file to the directory of the file.

--gcov-filter <gcov_filter>

Keep only gcov data files that match this filter. Can be specified multiple times. Config key(s): gcov-filter.

--gcov-exclude <gcov_exclude>

Exclude gcov data files that match this filter. Can be specified multiple times. Config key(s): gcov-exclude.

--gcov-exclude-directories <gcov_exclude_dirs>, --exclude-directories <gcov_exclude_dirs>

Exclude directories that match this regex while searching raw coverage files. Can be specified multiple times.
Config key(s): gcov-exclude-directories, exclude-directories.

-f <filter>, --filter <filter>

Keep only source files that match this filter. Can be specified multiple times. Relative filters are relative to the
current working directory or if defined in a configuration file. If no filters are provided, defaults to --root. Config
key(s): filter.

-e <exclude>, --exclude <exclude>

Exclude source files that match this filter. Can be specified multiple times. Config key(s): exclude.
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4.1.4 GCOV Options

The ‘gcov’ tool turns raw coverage files (.gcda and .gcno) into .gcov files that are then processed by gcovr. The gcno
files are generated by the compiler. The gcda files are generated when the instrumented program is executed.

-g, --gcov-use-existing-files, --use-gcov-files

Use existing gcov files for analysis. Config key(s): gcov-use-existing-files, use-gcov-files.

--gcov-ignore-errors {all,source_not_found,output_error,no_working_dir_found}

Ignore errors from invoking GCOV command instead of exiting with an error. A report will be shown on stderr.
Default is ‘None’. Config key(s): gcov-ignore-errors.

--gcov-ignore-parse-errors {all,negative_hits.warn,negative_hits.warn_once_per_file}

Skip lines with parse errors in GCOV files instead of exiting with an error. A report will be shown on stderr.
Default is ‘None’. Config key(s): gcov-ignore-parse-errors.

--gcov-executable <gcov_cmd>

Use a particular gcov executable. Must match the compiler you are using, e.g. ‘llvm-cov gcov’ for Clang. Can
include additional arguments. Defaults to the GCOV environment variable, or ‘gcov’: ‘gcov’. Config key(s):
gcov-executable.

--gcov-object-directory <gcov_objdir>, --object-directory <gcov_objdir>

Override normal working directory detection. Gcovr needs to identify the path between gcda files and the direc-
tory where the compiler was originally run. Normally, gcovr can guess correctly. This option specifies either the
path from gcc to the gcda file (i.e. gcc’s ‘-o’ option), or the path from the gcda file to gcc’s working directory.
Config key(s): gcov-object-directory, object-directory.

-k, --gcov-keep, --keep

Keep gcov files after processing. This applies both to files that were generated by gcovr, or were supplied via the
--gcov-use-existing-files option. Config key(s): keep-gcov-files.

-d, --gcov-delete, --delete

Delete gcda files after processing. Config key(s): delete-gcov-files.

-j <gcov_parallel>

Set the number of threads to use in parallel. Config key(s): gcov-parallel.

--merge-mode-functions {strict,merge-use-line-0,merge-use-line-min,merge-use-line-max,
separate}

The merge mode for functions coverage from different gcov files for same sourcefile.Default is ‘strict’. Config
key(s): merge-mode-functions.

--include-internal-functions

Include function coverage of compiler internal functions (starting with ‘__’ or ‘_GLOBAL__sub_I_’). Config
key(s): include-internal-functions.

--exclude-unreachable-branches

Exclude branch coverage from lines without useful source code (often, compiler-generated ‘dead’ code). Config
key(s): exclude-unreachable-branches.

--exclude-function-lines

Exclude coverage from lines defining a function. Config key(s): exclude-function-lines.

--exclude-noncode-lines

Exclude coverage from lines which seem to be non-code. Negation: --no-exclude-noncode-lines. Config key(s):
exclude-noncode-lines.
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--exclude-throw-branches

For branch coverage, exclude branches that the compiler generates for exception handling. This often leads to
more ‘sensible’ coverage reports. Config key(s): exclude-throw-branches.

For guide-level explanation on using these options, see the User Guide.
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FIVE

COOKBOOK

This section contains how-to guides on creating code coverage reports for various purposes. For an introduction on
using gcovr, see the User Guide instead.

Recipes in the cookbook:

• How to collect coverage for C extensions in Python

• Out-of-Source Builds with CMake

• Support of Keil uVision format

• How to create a standalone application

5.1 How to collect coverage for C extensions in Python

Collecting code coverage data on the C code that makes up a Python extension module is not quite as straightforward
as with a regular C program.

As with a normal C project, we have to compile our code with coverage instrumentation. Here, we export
CFLAGS="--coverage" and then run python3 setup.py build_ext.

Unfortunately, build_ext can rebuild a source file even if the current object file is up to date. If multiple extension
modules share the same source code file, gcov will get confused by the different timestamps and report inaccurate
coverage. It is nontrivial to adapt the build_ext process to avoid this.

Instead, we can use the ccache utility to make the compilation lazy (works best on Unix systems). Before we invoke the
build_ext step, we first export CC="ccache gcc". Ccache works well but isn’t absolutely perfect, see the ccache
manual for caveats.

A shell session might look like this:

# Set required env vars
export CFLAGS="--coverage"
export CC="ccache gcc"

# clear out build files so we get a fresh compile
rm -rf build/temp.* # contains old .gcda, .gcno files
rm -rf build/lib.*

# rebuild extensions
python3 setup.py build_ext --inplace # possibly --force

(continues on next page)
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(continued from previous page)

# run test command i.e. pytest

# run gcovr
rm -rf coverage; mkdir coverage
gcovr --filter src/ --txt-summary --html-details coverage/index.html

5.2 Out-of-Source Builds with CMake

Tools such as cmake encourage the use of out-of-source builds, where the code is compiled in a directory other than
the one which contains the sources. This is an extra complication for gcov. In order to pass the correct compiler and
linker flags, the following commands need to be in CMakeLists.txt:

# This flags are used if cmake is called with -DCMAKE_BUILD_TYPE=PROFILE
set(CMAKE_C_FLAGS_PROFILE --coverage)
set(CMAKE_CXX_FLAGS_PROFILE --coverage)

add_executable(program example.cpp)

The --coverage compiler flag is an alternative to -fprofile-arcs -ftest-coverage for recent version
of gcc. In versions 3.13 and later of cmake, the target_link_libraries command can be removed and
add_link_options("--coverage") added after the add_compile_options command.

We then follow a normal cmake build process:

cd $BLD_DIR
cmake -DCMAKE_BUILD_TYPE=PROFILE $SRC_DIR
make VERBOSE=1

and run the program:

cd $BLD_DIR
./program

However, invocation of gcovr itself has to change. The assorted .gcno and .gcda files will appear under the
CMakeFiles directory in BLD_DIR, rather than next to the sources. Since gcovr requires both, the command we
need to run is:

cd $BLD_DIR
gcovr -r $SRC_DIR . --txt example_cmake.txt

5.3 Support of Keil uVision format

As mentioned in comment of issue 697 the format of gcov file generated by the Keil uVision compiler is not compatible
with the gcov specification. To support coverage data generated by this compiler you have to create the gcov files as
documented in Keil uVision documentation and process them before running gcov to get the correct format.

Save the following Sed script as fix-gcov.sed:

# fix markers for uncovered code:
# match any of #=%$ repeated 6 times
s/^\([#=%$]\)\(\1\{5\}\)/\2/

(continues on next page)
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(continued from previous page)

# fix branch tags
/^branch/ {
s/executed 0/never executed/
s/executed .*/taken 1/
s/skipped .*/never executed/

}

Then, apply this Sed script to all gcov files before invoking gcovr:

find . -name '*.gcov' -exec sed -i -f fix-gcov.sed {} \;
gcovr --gcov-use-existing-files

Warning: Untested because we have no access to Keil uVision compiler

5.4 How to create a standalone application

To create a standalone application you need to install the test suite (see Test suite). In this test suite you can build
a standalone executable with the command python3 -m nox --session bundle_app. The command creates the
application build/gcovr and calls the executable whith each format to check if it’s working correct.
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CHAPTER

SIX

FREQUENTLY ASKED QUESTIONS

6.1 What is the difference between lcov and gcovr?

Both lcov and gcovr are tools to create coverage reports.

Gcovr was originally created as a simple script to provide a convenient command line interface to gcov that produced
more easily digestible output similar to Python’s coverage utilities.

Later, we added XML output that could be used with the Cobertura plugin of the Jenkins continuous integration server.
This gave us nice coverage reports for C/C++ code in Jenkins.

HTML output was added much later. If all you need is HTML, pick whichever one produces the output you like better
or integrates easier with your existing workflow.

Lcov is a far older project that is part of the Linux Test Project. It provides some features that gcovr does not have:
For example, lcov has explicit support for capturing Linux kernel coverage. Lcov also supports various trace file
manipulation functions such as merging trace files from different test runs. You can learn more at the lcov website or
the lcov GitHub repository.

6.2 Why does C++ code have so many uncovered branches?

Gcovr’s branch coverage reports are based on GCC’s -profile-arcs feature, which uses the compiler’s control flow
graph (CFG) of each function to determine branches. This is a very low-level view: to understand the branches in a
given function, it can help to view the function’s assembly, e.g. via the Godbolt Compiler Explorer.

What gcovr calls a branch is in fact an arc between basic blocks in the CFG. This means gcovr’s reports have many
branches that are not caused by if statements! For example:

• Arcs are caused by C/C++ branching operators: for, if, while, switch/case, &&, ||, ? :. Note that switches
are often compiled as a decision tree which introduces extra arcs, not just one per case.

• (Arcs into another function are not shown.)

• Arcs are caused when a function that may throw returns: one arc to the next block or statement for normal returns,
and one arc to an exception handler for exceptions, if this function contains an exception handler. Every local
variable with a destructor is an exception handler as well.

• Compiler-generated code that deals with exceptions often needs extra branches: throw statements, catch
clauses, and destructors.

• Extra arcs are created for static initialization and destruction.

• Arcs may be added or removed by compiler optimizations. If you compile without optimizations, some arcs may
even be unreachable!
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Gcovr is not able to remove any “unwanted” branches because GCC’s gcov tool does not make the necessary information
available, and because different projects are interested in different kinds of branches. However, gcovr has the following
options to reduce unwanted branches:

With the gcovr --exclude-unreachable-branches option, gcovr parses the source code to see whether that line
even contains any code. If the line is empty or only contains curly braces, this could be an indication of compiler-
generated code that was mis-attributed to that line (such as that for static destruction) and branch coverage will be
ignored on that line.

With the gcovr --exclude-throw-branches option, exception-only branches will be ignored. These are typically
arcs from a function call into an exception handler.

With the gcovr --decisions option, gcovr parses the source code to extract a ISO 26262 compliant metric for
decision coverage. This metric can be interpreted as the branch coverage on C/C++-Level. While the feature is not
always able to detect the decisions reliabily when the code is written very compact (uncheckable decisions will be
marked), it provides a reliable tool for (i.e. MISRA-compliant) code in security-relevant situations.

Compiling with optimizations will typically remove unreachable branches and remove superfluous branches, but makes
the coverage report less exact. For example, branching operators might be optimized away. Decision coverage analysis
will be very buggy when compiling with optimizations. See also: Gcov and Optimization in the GCC documentation.

Despite these approaches, 100% branch coverage will be impossible for most programs.

6.3 Why are uncovered files not reported?

Gcovr does report files that have zero coverage, even when no .gcda file is available for that compilation unit.

However, the gcov tool in some versions of GCC refuses to generate output for uncovered files.

To fix this, upgrade GCC to:

• version 5.5 or later,

• version 6.2 or later, or

• any version since 7.

Note that the compiler may ignore inline functions that are never used.

6.4 Which options are used for calling gcov?

The options used for calling gcov depends on the version of gcov.

Following options are always used:

• --branch-counts

• --branch-probabilities

• --object-directory

Following options are only used if available:

• --demangled-names: Not available for LLVM based gcov.

• --hash-filenames: Available since GCC 7, as fallback the option --preserve-paths is used.
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CHAPTER

SEVEN

CONTRIBUTING

This document contains:

• our guidelines for bug reports

• general contribution guidelines

• a checklist for pull requests

• a developer guide that explains the development environment, project structure, and test suite

7.1 How to report bugs

When reporting a bug, first search our issues to avoid duplicates. In your bug report, please describe what you expected
gcovr to do, and what it actually did. Also try to include the following details:

• how you invoked gcovr, i.e. the exact flags and from which directory

• your project layout

• your gcovr version

• your compiler version

• your operating system

• and any other relevant details.

Ideally, you can provide a short script and the smallest possible source file to reproduce the problem.

7.2 How to help

If you would like to help out, please take a look at our open issues and pull requests. The issues labeled help wanted
and needs review would have the greatest impact.

There are many ways how you can help:

• assist other users with their problems

• share your perspective as a gcovr user in discussions

• test proposed changes in your real-world projects

• improve our documentation

• submit pull requests with bug fixes and enhancements
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7.3 How to submit a Pull Request

Thank you for helping with gcovr development! Please follow this checklist for your pull request:

• Is this a good approach? Fixing open issues is always welcome! If you want to implement an enhancement,
please discuss it first as a GitHub issue.

• Does it work? Please run the tests locally:

python3 -m nox

(see also: Test suite)

In any case, the tests will run automatically when you open the pull request. But please prevent unnecessary
build failures and run the tests yourself first. If you cannot run the tests locally, you can activate GitHub for your
fork, or run the tests with Docker. If there are differences the updated files will be available for download from
the CI system (one ZIP for each test environment).

If you add new features, please try to add a test case.

• Does it conform to the style guide? The source code should conform to the PEP 8 standard. Please check your
code:

python3 -m nox --session lint

# or:

python3 -m flake8 doc gcovr

The command python3 -m nox will run the linters, run the tests, and check that the docs can be built.

• Add yourself as an author. If this is your first contribution to gcovr, please add yourself to the AUTHORS.txt
file.

• One change at a time. Please keep your commits and your whole pull request fairly small, so that the changes
are easy to review. Each commit should only contain one kind of change, e.g. refactoring or new functionality.

• Why is this change necessary? When you open the PR, please explain why we need this change and what your
PR does. If this PR fixes an open issue, reference that issue in the pull request description. Add a reference to
the issue in the CHANGELOG.rst, if the change should not be visible in the changelog (minor or not of interest),
add the following string to a single line in the PR body:

[no changelog]

Once you submit the PR, it will be automatically tested on Windows and Linux, and code coverage will be collected.
Your code will be reviewed. This can take a week. Please fix any issues that are discovered during this process. Feel
free to force-push your updates to the pull request branch.

If you need assistance for your pull request, you can

• chat in our Gitter room

• discuss your problem in an issue

• open an unfinished pull request as a work in progress (WIP), and explain what you’ve like to get reviewed
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7.4 How to set up a development environment

For working on gcovr, you will need a supported version of Python 3, GCC version 5, 6, 8, 9, 10 or 11 (other GCC
versions are supported by gcovr, but will cause spurious test failures) or clang version 10, 13 or 14, make, cmake and
ninja. Please make sure that the tools are in the system PATH. On Windows, you will need to install a GCC toolchain
as the tests expect a Unix-like environment. You can use MinGW-W64 or MinGW. An easier way is to run tests with
Docker, on Windows a Pro license or the WSL (Windows subsystem for Linux) is needed.

• Check your GCC installation, the binary directory must be added to the PATH environment. If on of the following
command groups are everything is OK.

– gcc-5/g++-5/gcov-5

– gcc-6/g++-6/gcov-6

– gcc-8/g++-8/gcov-8

– gcc-9/g++-9/gcov-9

– gcc-10/g++-10/gcov-10

– gcc-11/g++-11/gcov-11

– gcc-12/g++-12/gcov-12

– gcc-13/g++-13/gcov-13

– clang-10/clang++-10/llvm-cov

– clang-13/clang++-13/llvm-cov

– clang-14/clang++-14/llvm-cov

– clang-15/clang++-15/llvm-cov

are available everything is OK. The test suite uses the newest GCC found in the PATH. To use another one you
need to set the environment CC=... see run and filter tests. If you only have gcc in your path the version is
detected to select the correct reference. You can also create symlinks for the gcc executables with the following
steps. You can check the GCC version with gcc --version. If the output says version 8, you should also be able
to run gcc-8 --version. Your Linux distribution should have set all of this up already. If you don’t have an alias
like gcc-8, perform the following steps to create an alias for gcc, this should also work in the MSYS shell under
Windows:

1. Create a directory somewhere, e.g. in your home directory: mkdir ~/bin

2. Create a symlink in that directory which points to GCC: ln -s $(which gcc) ~/bin/gcc-8

3. Add this directory to your PATH: export PATH="$HOME/bin:$PATH"

4. Re-test gcc-8 --version to ensure everything worked.

5. Create additional symlinks for g++ -> g++-8 and gcov -> gcov-8.

• (Optional) Fork the project on GitHub.

• Clone the git repository.

• (Optional) Set up a virtualenv (e.g. with python3 -m venv my-venv)

• Install gcovr in development mode, and install nox:

pip install -e .
pip install nox
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You can then run gcovr as gcovr or python3 -m gcovr.

Run the tests to verify that everything works (see Test suite).

• (Optional) Activate GitHub Actions for your forked repository, so that the cross-platform compatibility tests get
run whenever you push your work to your repository. These tests will also be run when you open a pull request
to the main gcovr repository.

Tip: If you have problems getting everything set up, consider looking at these files:

• for Linux: .github/workflows/test.yml and admin/Dockerfile.qa

• for Windows: .github/workflows/test.yml

7.5 Project Structure

Path Description
/ project root
/gcovr/ the gcovr source code (Python module)
/gcovr/__main__.py command line interface + top-level behaviour
/gcovr/templates/ HTML report templates
/gcovr/tests/ unit tests + integration test corpus
/noxfile.py Definition of tests tasks
/setup.py Python package configuration
/doc/ documentation
/doc/sources/ user guide + website
/doc/examples/ runnable examples for the user guide

The program entrypoint and command line interface is in gcovr/__main__.py. The coverage data is parsed in the
gcovr.gcov module. The HTML, XML, text, and summary reports are in gcovr.generator.html and respective
modules.

7.6 Test suite

The QA process (python3 -m nox) consists of multiple parts:

• linting and checking format(python3 -m nox --session lint)

• tests (python3 -m nox --session tests)

– unit tests in gcovr/tests

– integration tests in gcovr/tests

– documentation examples in doc/examples

• documentation build (python3 -m nox --session doc)

The tests are in the gcovr/tests directory. You can run the tests with python3 -m nox --session tests for the
default GCC version (specified via CC environment variable, defaults to gcc-5). You can also select the gcc version if
you run the tests with e.g. python3 -m nox --session 'tests_compiler(gcc-8)'.

There are unit tests for some parts of gcovr, and a comprehensive corpus of example projects that are executed as the
test_gcovr.py integration test. Each gcovr/tests/* directory is one such example project.

You can format files with python3 -m nox --session black)
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To get a list of all available sessions run python3 -m nox -l.

The next sections discuss the structure of integration tests, how to run and filter tests, and how to run tests with Docker.

Changed in version 5.2: If black is called without arguments, all files are reformated instead of checked. To check the
format use the session lint.

7.6.1 Structure of integration tests

Each project in the corpus contains a Makefile and a reference directory:

gcovr/tests/sometest/
reference/
Makefile
README
example.cpp

The Makefile controls how the project is built, and how gcovr should be invoked. The reference directory contains
baseline files against which the gcovr output is compared. Tests can be executed even without baseline files.

Each Makefile contains the following targets:

• all: builds the example project. Can be shared between gcovr invocations.

• run: lists available targets which must be a subset of the available output formats.

• clean: remove any generated files after all tests of the scenario have finished.

• output formats (txt, html, json, sonarqube, . . . ): invoke gcovr to produce output files of the correct format. The
test runner automatically finds the generated files (if any) and compares them to the baseline files in the reference
directory. All formats are optional, but using at least JSON is recommended.

• clean-each: if provided, will be invoked by the test runner after testing each format.

7.6.2 Run and filter tests

To run all tests, use python3 -m nox. The tests currently assume that you are using GCC 5 and have set up a de-
velopment environment. You can select a different GCC version by setting the CC environment variable. Supported
versions are CC=gcc-5, CC=gcc-6, CC=gcc-8, CC=gcc-9, gcc-10, gcc-11, gcc-12, gcc-13, clang-10, clang-13,
clang-14 and clang-15.

You can run the tests with additional options by adding -- and then the options to the test invocation. Run all tests after
each change is a bit slow, therefore you can limit the tests to a specific test file, example project, or output format. For
example:

# run only XML tests
python3 -m nox --session tests -- -k 'xml'

# run the simple1 tests
python3 -m nox --session tests -- -k 'simple1'

# run the simple1 tests only for XML
python3 -m nox --session tests -- -k 'xml and simple1'

To see which tests would be run, add the --collect-only option:
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#see which tests would be run
python3 -m nox --session tests -- --collect-only

Sometimes during development you need to create reference files for new test or update the current reference files. To
do this you have to add --generate_reference or --update-reference option to the test invocation. By default
generated output files are automatically removed after test run. To skip this process you can add --skip_clean option
the test invocation. For example:

# run tests and generate references for simple1 example
python3 -m nox --session tests -- -k 'simple1' --generate_reference

# run tests and update xml references for simple1 example
python3 -m nox --session tests -- -k 'xml and simple1' --update_reference

# run only XML tests and do not remove generated files
python3 -m nox --session tests -- -k 'xml' --skip_clean

To update the refernce data for all compiler in one call see run tests with Docker.

When the currently generated output reports differ to the reference files you can create a ZIP archive named diff.zip
in the tests directory by using --archive_differences option. Currently in gcovr it is used by GitHub CI to create
a ZIP file with the differences as an artifact.

# run tests and generate a ZIP archive when there were differences
python3 -m nox --session tests -- --archive_differences

Changed in version 5.1: Change how to start test from make test to python3 -m nox --session tests

New in version 5.0: Added test options --generate_reference, --update_reference, --skip_clean, ‘--archive_differences’
and changed way to call tests only by make test.

7.6.3 Run tests with Docker

If you can’t set up a toolchain locally, you can run the QA process via Docker. First, build the container image:

python3 -m nox --session docker_build

Then, run the container, which executes nox within the container:

python3 -m nox --session docker_run -s qa

Or to build and run the container in one step:

python3 -m nox --session docker_qa

You can select the gcc version to use inside the docker by setting the environment variable CC to gcc-5 (default), gcc-6,
gcc-8, gcc-9, gcc-10, gcc-11, gcc-12, gcc-13, clang-10, clang-13, or clang-14 or you can build and run the container
with:

python3 -m nox --session 'docker_qa_compiler(gcc-9)'

To run a specific session you can use the session docker_compiler and give the arguments to the nox executed inside
the container after a -- :
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python3 -m nox --session 'docker_compiler(gcc-9)' -- -s tests

You can also use the compiler ‘all’ to run the tests for all compiler versions, ‘gcc’ to only use the gcc versions, or
‘clang’ to use clang versions. A useful command to update all the reference files is :

python3 -m nox --session 'docker_compiler(all)' -- -s tests -- --update_reference

7.6.4 Use a devcontainer

For developing gcovr you can use whatever editor you want. If the editor supports Devcontainers (e.g. VS Code) you
do not need to install the needed tools on your local system. You can also use GitHub Codespaces to contribute to
the project.

7.7 Become a gcovr developer

After you’ve contributed a bit (whether with discussions, documentation, or code), consider becoming a gcovr devel-
oper. As a developer, you can:

• manage issues and pull requests (label and close them)

• review pull requests (a developer must approve each PR before it can be merged)

• participate in votes

Just open an issue that you’re interested, and we’ll have a quick vote.
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EIGHT

CHANGE LOG

gcovr Release History and Change Log

8.1 7.1 (24 February 2024)

Known bugs:

Breaking changes:

New features and notable changes:

• Add support for colored logging. (#887)

• Add support for TOML configuration format. (#881)

• Add support for Clover XML output format. (#888)

• Add decision to JSON summary report if --decisions is used. (#892)

Bug fixes and small improvements:

• Add support for files with more than 9999 lines. (#883, fixes #882)

• Do not suppress gcov errors if exception occur. (#889)

Documentation:

• Add nox session to generate the screenshots from the HTML files. (#877)

Internal changes:

• Improve Dockerfile for faster rebuilds by using cache. (#878)

• Fix deprecation warnings from GitHub actions. (#880)

• Add pipeline job to apply tag if new version is bumped. (#879)

• Improve test coverage and generate coverage report if executed in local environment. (#891)
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8.2 7.0 (25 January 2024)

Known bugs:

Breaking changes:

• Dropped support for Python 3.7 (#869)

• The exit code for an error of the reader module is changed from 8 to 64 and for a writer from 7 to 128. (#773)

New features and notable changes:

• Add --html-template-dir option to use custom Jinja2 templates. (#758)

• Add block numbers and md5 sums of code lines to data model. (#764)

• If the CSS given with --html-css contains the string /* Comment.Preproc */ no pygments CSS is added
anymore. (#786)

• Add support for Devcontainer and GitHub Codespaces. (#771)

• Fix Dockerfile.qa to avoid uid conflicts. (#801)

• Pygments required 2.13.0. (#799)

• Add a second theme for HTML report inspired by GitHub. (#793)

• Add --fail-under-decision and --fail-under-function which will error under a given minimum cov-
erage. (#773)

• Add function coverage to data model. (#822)

• Add support for importing Cobertura XML files with --cobertura-add-tracefile option. (#805)

• Add --jacoco to generate JaCoCo XML format. (#823))

• Add function coverage to HTML report. (#828)

• Improve sorting of data in reports. (#817):

– Sort file names alpha numerical and with casefold (see str.casefold) (file_10.c comes after file_0.c).

– Always sort at the end by filename if line or branch coverage is identical for a file.

– Add --sort-branches to sort by branches instead of lines, this is the default if --txt-branches is used.

– Add --sort-reverse to reverse the sort order.

• Add option to report covered lines in txt report. (#836)

• Add support for specifying files for search_paths. (#834)

• Use different color for partial covered lines in HTML report. (#839)

• Add support to generate LCOV info files. (#830)

• Add support for FIPS enabled OS when used with Python 3.9. (#850)

• Reduce file size for detailed HTML reports by merging columns the function lists. (#840)

• Ignore all negative hits if --gcov-ignore-parse-errors is used. (#852)

• Use literal options for sorting and TXT metric. (#867)

– The -b, --txt-branches and --branches are deprecated, use --txt-metric instead. The reason for
this is that we have line, branch and decision coverage and handle this with flags is more complex than
using an enumeration.
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– The --sort-uncovered and --sort-percentage are deprecated, use --sort instead. The reason for
this is that only one sorting order shall be selectable and and an enumeration is easier to handle than several
flags.

• The development branch is renamed from master to main. (#829, #873)

• Add support for decision coverage metric in text report. (#864)

• Split list of functions into tables with maximum 10000 rows to fix rendering issues. (#858)

Bug fixes and small improvements:

• Print calls and decision statistics in summary only if values are gathered. (#749)

• Log the thread name if -j is used. (#752)

• Collapse also root directory if needed in nested HTML report. (#750)

• Handle special case of absolute source file paths in gcov output. (#776)

• Ignore exit code 6 when running gcov (output write error introduced gcc-12). (#781)

• Change coveralls value from 0.0 to 1.0 if no code lines or branches are present. (#796)

• Fix symlinked root directories on Windows. (#814)

• Extend --gcov-ignore-errors to be able to ignore specific gcov errors. (#787)

• Fix reading of choices options from configuration files (e.g. gcov-ignore-parse-errors). (#816)

• Fix TypeError during decision analysis. (#784)

• Use relative paths if possible when running gcov. (#820)

• Respect :option`--merge-mode-functions`when merging coverage data. (#844)

Documentation:

• Fix wrong command in How to create a standalone application docs. (#792)

• Update output html to add github style themes. (#818)

Internal changes:

• Do not scrub versions in reference data. (#747)

• Add interface for the different formats to easily add new formats. (#755)

• All options have now a prefix of the format and all long option names can be used in a configuration file. (#755)

– --txt-summary in addition to --print-summary.

– --json-add-tracefile in addition to --add-tracefile.

– --gcov-delete in addition to --delete.

– --gcov-keep in addition to --keep.

– --gcov-object-directory in addition to --object-directory.

– --gcov-exclude-directories in addition to --exclude-directories.

– --gcov-use-existing-files in addition to --use-gcov-files.

• Use interactive terminal for docker (support of Ctrl-C to interrupt). (#767)

• Use separate session for flake8 and us this session in lint. (#768)

• Replace the deprecated codecov python uploader with the binary uploader. (#770)

• Add gcc-12 and gcc-13 to the test suite. (#780)
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• Add sessions to run the targets for all versions of gcc or clang. (#782)

• Use build instead of calling setup.py directly. (#819)

• Add nox session to import reference file from pipeline. (#831)

• Add support for clang-15 in our test suite and fix test with write protection under Mac OS. (#853)

• Add test for parallel execution of multiple gcovr instances. (#832)

8.3 6.0 (08 March 2023)

Known bugs:

Breaking changes:

• Remove not allowed attributes function-rate, functions-covered and functions-valid from cobertura
report. (#671)

• Remove “noncode” entries in JSON reports. (#663)

• New --exclude-noncode-lines to exclude noncode lines. Noncode lines are not excluded by default any-
more. (#704, #705)

• Changed --gcov-ignore-parse-errors to accept list of errors to ignore. (#701)

• The default filename for --cobertura is changed from coverage.xml to cobertura.xml. (#721)

• Handling of gcov errors:

– Do not ignore return code of gcov. (#653)

– New --gcov-ignore-errors to ignore gcov errors. Old behavior was to print a warning and continue.
(#718)

• Revert changes from #623 and add documentation entry Support of Keil uVision format. (#727)

New features and notable changes:

• New --html-nested for reports that summarize subdirectories with aggregated statistics per directory. (#687)

• Accept NAN % which is used in GCOV 7.5.0 instead of an invalid value. (#651)

• New --json-base to define a base bath used in JSON reports. (#656)

• New --calls to report call coverage: function calls invoked/total. (#666)

• New nox session to generate a portable application with pyinstaller, see How to create a standalone application.
(#661)

• Print a warning if root directory contains symlinks. (#652)

• Change --keep when calling gcov internaly. (#703)

• Allow annotations for never executed branches. (#711)

• Add function merge mode for same function defined in different lines. (#700)

• Update link to gcovr documentation in HTML report to point to the documentation of the used version. (#723)

• Add environment SOURCE_DATE_EPOCH to set default for --timestamp. (#729)

Bug fixes and small improvements:

• Fix --html-tab-size feature. (#650)

• Fix alphabetical sort of html report, for when there are symlinks. (#685)
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• Handle --version before parsing the configuration file. (#696)

• Fix reports of excluded coverage. (#409, #503, #663)

• Fix handling for nonexistent source code for HTML-details and Coveralls reports. (#663)

• Exclude functions with Exclusion Markers. (#713)

• Fix problem in decision parser if open block brace is on same line. (#681)

• Add Python 3.11 to test matrix. (#717)

• Fix casing of files if filesystem is case insensitive. (#694)

• Fix deadlock if -j is used and there are errors from gcov execution. (#719)

• Fix problem in decision parser if case is not on a single line with the break statement. (#738)

• Do not use realpath for DirectoryPrefixFilter to support symlinks in root directory. (#712)

Documentation:

• Add detailed reference for the JSON output format. (#663)

Internal changes:

• Select the --html-theme using CSS classes. (#650)

• Change and extend cmake tests. (#676)

• Detect gcc version for running tests. (#686)

• Use scrubbed data for --update_reference option. (#698)

• Install ninja with package manager instead of GitHub action. (#699)

• Rename the reference files coverage.xml to cobertura.xml and the test from xml to cobertura. (#721)

• Add support for clang-14 in our test suite and improve startup performance of docker image. (#731)

• Compare files by extension in test suite. (#733)

• Split HTML templates into one file for each part of the page. (#735)

• Change docker image to be able to use it like the nox command itself. (#734)

8.4 5.2 (06 August 2022)

New features and notable changes:

• Log additional info on gcov parsing errors. (#589)

• Add support for branch exclude markers. (#644)

• Additional options to configure the thresholds for lines and branches in HTML separate. (#645)

Bug fixes and small improvements:

• Remove function coverage from sonarcube report. (#591)

• Fix parallel processing of gcov data. (#592)

• Better diagnostics when dealing with corrupted input files. (#593)

• Accept metadata lines without values (introduced in gcc-11). (#601)

• Properly close <a> element in detailed HTML report. (#602)
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• Use sign instead of >= in HTML legend. (#603)

• Using --add-tracefile will now correctly merge branch coverage. (#600)

• Fix package-level function coverage statistics in Cobertura XML reports. (#605)

• Respect excluded/noncode lines for aggregated branchcoverage. (#611)

• Fix list options in configuration file (search-path). (#612)

• Fix assert and key error in --decisions flag. (#642)

• Fix adding none existing lines by decision analysis to data model. (#617)

• Always treat relative paths in config files as relative to the directory of the file. (#615)

• More flexible .gcov parsing to support files generated by third party tools. (#621, #623)

Internal changes:

• Fix black check to fail on format errors. (#594)

• Change session black with no arguments to format all files. (#595)

• Add gcc-10 and gcc-11 to the test suite. (#597)

• Improved internal coverage data model to simplify processing. (#600)

• Use pretty print for cobertura and coveralls in test suite. (#606)

• Forward nox options --reuse-existing-virtualenvs and --no-install to call inside docker. (#616)

8.5 5.1 (26 March 2022)

Breaking changes:

• Dropped support for Python 3.6 (#550)

• Changed xml configuration key to cobertura (#552)

• JSON summary output: all percentages are now reported from 0 to 100 (#570)

New features and notable changes:

• Report function coverage (#362, #515, #554)

• Consistent support for symlinks across operating systems

– Support for Windows junctions (#535)

– Symlinks are only resolved for evaluating filters (#565)

• Show error message on STDERR when --fail-under-line or --fail-under-branch fails (#502)

• Can report decision coverage with --decisions option (reasonably formatted C/C++ source files only, HTML
and JSON output) (#350)

• Can create reproducible reports with the --timestamp option (#546)

• Improvements to Exclusion Markers (LINE/START/STOP)

– Can ignore markers in code with --no-markers option (#361)

– Can customize patterns with --exclude-pattern-prefix option (#561)

• Can use --cobertura as a less ambiguous alias for --xml. (#552)

Bug fixes and small improvements:
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• Gcov is invoked without localization by setting LC_ALL=C (#513)

• Gcov is invoked without temporary directories (#525)

• Gcov: solved problems with file name limitations. (#528)

• Fixed “root” path in JSON summary report. (#548)

• Correctly resolve relative filters in configuration files. (#568)

• HTML output: indicate lines with excluded coverage (#503)

• HTML output: fixed sanity check to support empty files (#571)

• HTML output: support jinja2 >= 3.1 (#576)

Documentation:

• Split documentation into smaller pages (#552)

• Document used options for gcov (#528)

Internal changes:

• Replaced own logger with Python’s logging module. (#540)

• New parser for .gcov file format, should be more robust. (#512)

• New tests

– more compilers: clang-10 (#484), clang-13 (#527), gcc-9 (#527)

– -fprofile-abs-path compiler option (#521)

– enabled symlink tests for Windows (#539)

• Improvements to the test suite

– Use Nox instead of Makefiles to manage QA checks (#516, #555)

– Can run tests for all compiler versions in one go (#514)

– More linter checks (#566) and code style enforcement with black (#579)

– Better XML diffing with yaxmldiff (#495, #509)

– Share test reference data between compiler versions where possible (#556)

– Better environment variable handling (#493, #541)

– Fixed glob patterns for collecting reference files (#533)

– Add timeout for each single test. (#572)

• Improvements and fixes to the release process (#494, #537)

• Normalize shell scripts to Unix line endings (#538, #547)
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8.6 5.0 (11 June 2021)

Breaking changes:

• Dropped support for Python 2 and Python 3.5. From now on, gcovr will only support Python versions that enjoy
upstream support.

Improvements and new features:

• Handles spaces in gcov path. (#385)

• Early fail when output cannot be created. (#382)

• Add --txt for text output. (#387)

• Add --csv for CSV output. (#376)

• Add --exclude-lines-by-pattern to filter out source lines by arbitrary regex. (#356)

• Add --json-summary to generate a JSON Summary report. (#366)

• Add --coveralls to generate a Coveralls compatible JSON report. (#328)

• Add support for output directories. If the output ends with a / or \ it is used as a directory. (#416)

• Compare paths case insensitive if file system of working directory is case insensitive. (#329)

• Add wildcard pattern to json --add-tracefile. (#351)

• Enable --filter and --exclude for Merging coverage. (#373)

• Only output 100.0% in text and HTML output if really 100.0%, else use 99.9%. (#389)

• Support relative source location for shadow builds. (#410)

• Incorrect path for header now can still generate html-details reports (#271)

• Change format version in JSON output from number to string and update it to “0.2”. (#418, #463)

• Only remove --root path at the start of file paths. (#452)

• Fix coverage report for cmake ninja builds with given in-source object-directory. (#453)

• Add issue templates. (#461)

• Add --exclude-function-lines to exclude the line of the function definition in the coverage report. (#430)

• Changes for HTML output format:

– Redesign HTML generation. Add --html-self-contained to control external or internal CSS. (#367)

– Change legend for threshold in html report. (#371)

– Use HTML title also for report heading. Default value for --html-title changed. (#378)

– Add --html-tab-size to configure tab size in HTML details. (#377)

– Add option --html-css for user defined styling. (#380)

– Create details html filename independent from OS. (#375)

– Add --html-theme to change the color theme. (#393)

– Add linkable lines in HTML details. (#401)

– Add syntax highlighting in the details HTML report. This can be turned off with
--no-html-details-syntax-highlighting. (#402, #415)

Documentation:
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• Cookbook: Out-of-Source Builds with CMake (#340, #341)

Internal changes:

• Add makefile + dockerfile for simpler testing.

• Add .gitbugtraq to link comments to issue tracker in GUIs. (#429)

• Add GitHub actions to test PRs and master branch. (#404)

• Remove Travis CI. (#419)

• Remove Appveyor CI and upload coverage report from Windows and Ubuntu from the GitHub actions. (#455)

• Add check if commit is mentioned in the CHANGELOG.rst. (#457)

• Move flake8 config to setup.cfg and add black code formatter. (#444)

• Fix filter/exclude relative path issue in Windows. (#320, #479)

• Extend test framework for CI:

– Set make variable TEST_OPTS as environment variable inside docker. (#372)

– Add make variable USE_COVERAGE to extend flags for coverage report in GitHub actions. (#404)

– Extend tests to use an unified diff in the assert. Add test options --generate_reference, --update_reference
and --skip_clean. (#379)

– Support multiple output patterns in integration tests. (#383)

– New option --archive_differences to save the different files as ZIP. Use this ZIP as artifact in AppVeyor.
(#392)

– Add support for gcc-8 to test suite and docker tests. (#423)

– Run as limited user inside docker container and add test with read only directory. (#445)

8.7 4.2 (6 November 2019)

Breaking changes:

• Dropped support for Python 3.4.

• Format flag parameters like --xml or --html now take an optional output file name. This potentially changes the
interpretation of search paths. In gcovr --xml foo, previous gcovr versions would search the foo directory
for coverage data. Now, gcovr will try to write the Cobertura report to the foo file. To keep the old meaning,
separate positional arguments like gcovr --xml -- foo.

Improvements and new features:

• Configuration file support (experimental). (#167, #229, #279, #281, #293, #300, #304)

• JSON output. (#301, #321, #326)

• Merging coverage with gcovr --add-tracefile. (#10, #326)

• SonarQube XML Output. (#308)

• Handle cyclic symlinks correctly during coverage data search. (#284)

• Simplification of --object-directory heuristics. (#18, #273, #280)

• Exception-only code like a catch clause is now shown as uncovered. (#283)

• New --exclude-throw-branches option to exclude exception handler branches. (#283)
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• Support --root .. style invocation, which might fix some CMake-related problems. (#294)

• Fix wrong names in report when source and build directories have similar names. (#299)

• Stricter argument handling. (#267)

• Reduce XML memory usage by moving to lxml. (#1, #118, #307)

• Can write multiple reports at the same time by giving the output file name to the report format parameter. Now,
gcovr --html -o cov.html and gcovr --html cov.html are equivalent. (#291)

• Override gcov locale properly. (#334)

• Make gcov parser more robust when used with GCC 8. (#315)

Known issues:

• The --keep option only works when using existing gcov files with -g/--use-gcov-files. (#285, #286)

• Gcovr may get confused when header files in different directories have the same name. (#271)

• Gcovr may not work when no en_US locale is available. (#166)

Documentation:

• Exclusion marker documentation.

• FAQ: Why does C++ code have so many uncovered branches? (#283)

• FAQ: Why are uncovered files not reported? (#33, #100, #154, #290, #298)

Internal changes:

• More tests. (#269, #268, #269)

• Refactoring and removal of dead code. (#280)

• New internal data model.

8.8 4.1 (2 July 2018)

• Fixed/improved --exclude-directories option. (#266)

• New “Cookbook” section in the documentation. (#265)

8.9 4.0 (17 June 2018)

Breaking changes:

• This release drops support for Python 2.6. (#250)

• PIP is the only supported installation method.

• No longer encoding-agnostic under Python 2.7. If your source files do not use the system encoding (probably
UTF-8), you will have to specify a --source-encoding. (#148, #156, #256)

• Filters now use forward slashes as path separators, even on Windows. (#191, #257)

• Filters are no longer normalized into pseudo-paths. This could change the interpretation of filters in some edge
cases.

Improvements and new features:

• Improved --help output. (#236)
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• Parse the GCC 8 gcov format. (#226, #228)

• New --source-encoding option, which fixes decoding under Python 3. (#256)

• New --gcov-ignore-parse-errors flag. By default, gcovr will now abort upon parse errors. (#228)

• Detect the error when gcov cannot create its output files (#243, #244)

• Add -j flag to run gcov processes in parallel. (#3, #36, #239)

• The --html-details flag now implies --html. (#93, #211)

• The --html output can now be used without an --output filename (#223)

• The docs are now managed with Sphinx. (#235, #248, #249, #252, #253)

• New --html-title option to change the title of the HTML report. (#261, #263)

• New options --html-medium-threshold and --html-high-threshold to customize the color legend. (#261, #264)

Internal changes:

• Huge refactoring. (#214, #215, #221 #225, #228, #237, #246)

• Various testing improvements. (#213, #214, #216, #217, #218, #222, #223, #224, #227, #240, #241, #245)

• HTML reports are now rendered with Jinja2 templates. (#234)

• New contributing guide. (#253)

8.10 3.4 (12 February 2018)

• Added --html-encoding command line option (#139).

• Added --fail-under-line and --fail-under-branch options, which will error under a given minimum coverage.
(#173, #116)

• Better pathname resolution heuristics for --use-gcov-file. (#146)

• The --root option defaults to current directory ‘.’.

• Improved reports for “(”, “)”, “;” lines.

• HTML reports show full timestamp, not just date. (#165)

• HTML reports treat 0/0 coverage as NaN, not 100% or 0%. (#105, #149, #196)

• Add support for coverage-04.dtd Cobertura XML format (#164, #186)

• Only Python 2.6+ is supported, with 2.7+ or 3.4+ recommended. (#195)

• Added CI testing for Windows using Appveyor. (#189, #200)

• Reports use forward slashes in paths, even on Windows. (#200)

• Fix to support filtering with absolute paths.

• Fix HTML generation with Python 3. (#168, #182, #163)

• Fix --html-details under Windows. (#157)

• Fix filters under Windows. (#158)

• Fix verbose output when using existing gcov files (#143, #144)
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8.11 3.3 (6 August 2016)

• Added CI testing using TravisCI

• Added more tests for out of source builds and other nested builds

• Avoid common file prefixes in HTML output (#103)

• Added the --execlude-directories argument to exclude directories from the search for symlinks (#87)

• Added branches taken/not taken to HTML (#75)

• Use --object-directory to scan for gcov data files (#72)

• Improved logic for nested makefiles (#135)

• Fixed unexpected semantics with --root argument (#108)

• More careful checks for covered lines (#109)

8.12 3.2 (5 July 2014)

• Adding a test for out of source builds

• Using the starting directory when processing gcov filenames. (#42)

• Making relative paths the default in html output.

• Simplify html bar with coverage is zero.

• Add option for using existing gcov files (#35)

• Fixing --root argument processing (#27)

• Adding logic to cover branches that are ignored (#28)

8.13 3.1 (6 December 2013)

• Change to make the -r/--root options define the root directory for source files.

• Fix to apply the -p option when the --html option is used.

• Adding new option, ‘--exclude-unreachable-branches’ that will exclude branches in certain lines from coverage
report.

• Simplifying and standardizing the processing of linked files.

• Adding tests for deeply nested code, and symbolic links.

• Add support for multiple —filter options in same manner as —exclude option.
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8.14 3.0 (10 August 2013)

• Adding the ‘--gcov-executable’ option to specify the name/location of the gcov executable. The command line
option overrides the environment variable, which overrides the default ‘gcov’.

• Adding an empty “<methods/>” block to <classes/> in the XML output: this makes out XML complient with
the Cobertura DTD. (#3951)

• Allow the GCOV environment variable to override the default ‘gcov’ executable. The default is to search the
PATH for ‘gcov’ if the GCOV environment variable is not set. (#3950)

• Adding support for LCOV-style flags for excluding certain lines from coverage analysis. (#3942)

• Setup additional logic to test with Python 2.5.

• Added the --html and --html-details options to generate HTML.

• Sort output for XML to facilitate baseline tests.

• Added error when the --object-directory option specifies a bad directory.

• Added more flexible XML testing, which can ignore XML elements that frequently change (e.g. timestamps).

• Added the ‘—xml-pretty’ option, which is used to generate pretty XML output for the user manual.

• Many documentation updates

8.15 2.4 (13 April 2012)

• New approach to walking the directory tree that is more robust to symbolic links (#3908)

• Normalize all reported path names

– Normalize using the full absolute path (#3921)

– Attempt to resolve files referenced through symlinks to a common project-relative path

• Process gcno files when there is no corresponding gcda file to provide coverage information for unexecuted
modules (#3887)

• Windows compatibility fixes

– Fix for how we parse source: file names (#3913)

– Better handling od EOL indicators (#3920)

• Fix so that gcovr cleans up all .gcov files, even those filtered by command line arguments

• Added compatibility with GCC 4.8 (#3918)

• Added a check to warn users who specify an empty --root option (see #3917)

• Force gcov to run with en_US localization, so the gcovr parser runs correctly on systems with non-English
locales (#3898, #3902).

• Segregate warning/error information onto the stderr stream (#3924)

• Miscellaneous (Python 3.x) portability fixes

• Added the master svn revision number as part of the verson identifier
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8.16 2.3.1 (6 January 2012)

• Adding support for Python 3.x

8.17 2.3 (11 December 2011)

• Adding the --gcov-filter and --gcov-exclude options.

8.18 2.2 (10 December 2011)

• Added a test driver for gcovr.

• Improved estimation of the <sources> element when using gcovr with filters.

• Added revision and date keywords to gcovr so it is easier to identify what version of the script users are using
(especially when they are running a snapshot from trunk).

• Addressed special case mentioned in [comment:ticket:3884:1]: do not truncate the reported file name if the filter
does not start matching at the beginning of the string.

• Overhaul of the --root / --filter logic. This should resolve the issue raised in #3884, along with the more
general filter issue raised in [comment:ticket:3884:1]

• Overhaul of gcovr’s logic for determining gcc/g++’s original working directory. This resolves issues introduced
in the original implementation of --object-directory (#3872, #3883).

• Bugfix: gcovr was only including a <sources> element in the XML report if the user specified -r (#3869)

• Adding timestamp and version attributes to the gcovr XML report (see #3877). It looks like the standard Cober-
tura output reports number of seconds since the epoch for the timestamp and a doted decimal version string. Now,
gcovr reports seconds since the epoch and “gcovr ``"+``__version__ (e.g. “gcovr 2.2”) to differentiate it
from a pure Cobertura report.

8.19 2.1 (26 November 2010)

• Added the --object-directory option, which allows for a flexible specification of the directory that contains
the objects generated by gcov.

• Adding fix to compare the absolute path of a filename to an exclusion pattern.

• Adding error checking when no coverage results are found. The line and branch counts can be zero.

• Adding logic to process the -o/--output option (#3870).

• Adding patch to scan for lines that look like:

creating `foo'

as well as

creating 'foo'

• Changing the semantics for EOL to be portable for MS Windows.

• Add attributes to xml format so that it could be used by hudson/bamboo with cobertura plug-in.
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8.20 2.0 (22 August 2010)

• Initial release as a separate package. Earlier versions of gcovr were managed within the ‘fast’ Python package.
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CHAPTER

NINE

LICENSE

Copyright (c) 2013-2024 the gcovr authors Copyright (c) 2013 Sandia Corporation. Under the terms of Contract DE-
AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software.

This software is distributed under the 3-clause BSD License. See LICENSE.txt for full details. See AUTHORS.txt for
the full list of contributors.

Gcovr development moved to this repository in September, 2013 from Sandia National Laboratories.

9.1 License Terms

Gcovr is available under the terms of a BSD-3-clause license:

Copyright (c) 2013-2024 the gcovr authors
Copyright (c) 2013 Sandia Corporation.
Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the Sandia National Laboratories nor the names of
its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

(continues on next page)
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(continued from previous page)

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

9.2 Acknowledgements

Gcovr is maintained by:

Lukas Atkinson and Michael Förderer.

The following developers contributed to gcovr (ordered alphabetically):

alex43dm, Andrew Stone, Antonio Quarta, Arvin Schnell, Attie Grande, Bernhard Breinbauer, Carlos
Jenkins, Cary Converse, Cezary Gapiński, Christian Taedcke, Dave George, Davide Pesavento, Dom Pos-
torivo, ebmmy, Elektrobit Automotive GmbH, Ensky Lin, Frank Ullrich, Frank Wiles, Glenn Töws, Gré-
goire Roussel, goriy, Irfan Adilovic, ja11sop, James Reynolds, Jeremy Fixemer, Jessica Levine, Joachim
Kuebart, Joel Klinghed, Johan Bertrand, John Siirola, Jörg Kreuzberger, Jordi Sabater, Josef Barnes, Kai
Blaschke, Kevin Broselge, Kevin Cai, Klaus Weinbauer, Leon Ma, libPhipp, Lukas Atkinson, Lukas Bais-
cher, Luke Woydziak, Marc Font Freixa, Marek Kurdej, Martin Mraz, Matsumoto Taichi, Matthew Stadel-
man, Matthias Schmieder, Matthieu Darbois, Matthieu Eyraud, Michael Förderer, Michał Pszona, Mikael
Salson, Mikk Leini, Nikolaj Schumacher, Oleksiy Pikalo, Pablo Martín, Phil Clapham, Piotr Dziwinski,
Reto Schneider, Richard Kjerstadius, Robert Rosengren, Sebastian Weigand, Songmin Li, Steven Myint,
Sylvestre Ledru, TFA-N, Thibault Gasc, Tilo Wiedera, Tyler W. Mace, trapzero, Will Thompson, William
Hart, Zachary J. Fields, Zachary P. Hensley, and possibly others.

The development of Gcovr has been partially supported by Sandia National Laboratories. Sandia National Laboratories
is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.
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--print-summary

gcovr command line option, 40
--root

gcovr command line option, 35
--sonarqube

gcovr command line option, 39
--sort

gcovr command line option, 37
--sort-branches

gcovr command line option, 37
--sort-percentage

gcovr command line option, 37
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